首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
SOCS-1 (suppressor of cytokine signaling-1) is a representative of a family of negative regulators of cytokine signaling (SOCS-1 to SOCS-7 and CIS) characterized by a highly conserved C-terminal SOCS box preceded by an SH2 domain. This study comprehensively examined the ability of several SOCS family members to negatively regulate the gp130 signaling pathway. SOCS-1 and SOCS-3 inhibited both interleukin-6 (IL-6)- and leukemia inhibitory factor (LIF)-induced macrophage differentiation of murine monocytic leukemic M1 cells and LIF induction of a Stat3-responsive reporter construct in 293T fibroblasts. Deletion of amino acids 51-78 in the N-terminal region of SOCS-1 prevented inhibition of LIF signaling. The SOCS-1 and SOCS-3 N-terminal regions were functionally interchangeable, but this did not extend to other SOCS family members. Mutation of SH2 domains abrogated the ability of both SOCS-1 and SOCS-3 to inhibit LIF signal transduction. Unlike SOCS-1, SOCS-3 was unable to inhibit JAK kinase activity in vitro, suggesting that SOCS-1 and SOCS-3 act on the JAK-STAT pathway in different ways. Thus, although inhibition of signaling by SOCS-1 and SOCS-3 requires both the SH2 and N-terminal domains, their mechanisms of action appear to be biochemically different.  相似文献   

4.
Previous studies suggest that ciliary neurotrophic factor (CNTF) may represent one of the extrinsic signals controlling the development of vertebrate retinal photoreceptors. In dissociated cultures from embryonic chick retina, exogenously applied CNTF has been shown to act on postmitotic rod precursor cells, resulting in an two- to fourfold increase in the number of cells acquiring an opsin-positive phenotype. We now demonstrate that the responsiveness of photoreceptor precursors to CNTF is confined to a brief phase between their final mitosis and their terminal differentiation owing to the temporally restricted expression of the CNTF receptor (CNTFR alpha). As shown immunocytochemically, CNTFR alpha expression in the presumptive photoreceptor layer of the chick retina starts at embryonic day 8 (E8) and is rapidly down-regulated a few days later prior to the differentiation of opsin-positive photoreceptors, both in vivo and in dissociated cultures from E8. We further show that the CNTF-dependent in vitro differentiation of rods is followed by a phase of photoreceptor-specific apoptotic cell death. The loss of differentiated rods during this apoptotic phase can be prevented by micromolar concentrations of retinol. Our results provide evidence that photoreceptor development depends on the sequential action of different extrinsic signals. The time course of CNTFR alpha expression and the in vitro effects suggest that CNTF or a related molecule is required during early stages of rod differentiation, while differentiated rods depend on additional protective factors for survival.  相似文献   

5.
6.
In the CD4+ T cell lineage, two well-defined differentiated populations are the Th1 and Th2 cells, which stem from a common naive T helper precursor (Thp). In this study, we begin to dissect the signaling pathways selectively used by Th1 or Th2 cells as they mature from a common naive precursor in vitro. We show that the maturing Th1 cells mount a vigorous and specific Ca2+ transient upon contact with immunogenic ligand, which is enhanced over that of the naive progenitor cells. As the cells differentiate toward a Th2 phenotype, they quickly lose the ability to engage this pathway, indicating a developmental segregation of intracellular signaling utilization. Moreover, altered peptide ligand stimulation of the Th1 line stimulates a similar Ca2+ transient as native ligand stimulation of the naive precursors, consistent with a quantitative difference in intracellular signaling by these two peptides. These data provide a direct and sequential assessment of a signaling pathway utilization in peripheral T cells as they differentiate to their final functional states.  相似文献   

7.
Ciliary neurotrophic factor (CNTF) is a multifunctional cytokine that mediates survival and differentiation of neurons as well as many other cell types. In this study, CNTF and leukemia inhibitory factor (LIF) reduced the apparent number of primary serotonergic neurons in E14 raphe culture by 90% as determined by immunocytochemistry for serotonin (5HT). The reduction in 5HT cell number was not due to neuronal loss as removal of CNTF after 4 days in culture resulted in a partial restitution of the serotonergic phenotype. In the RN46A serotonergic cell line which is induced to become serotonergic by brain-derived neurotrophic factor (BDNF), the addition of CNTF suppressed tryptophan hydroxylase and 5HT synthesis and increased choline acetyl transferase (ChAT) expression by 6-fold and ChAT activity by 20- to 30-fold over 12 days. As with the primary neurons, removal and replacement of CNTF with BDNF after 4 days resulted in a partial restitution of 5HT expression. Moreover, other members of the CNTF-cytokine family that use gp130 and/or LIF receptor beta as their signal transducing receptors-LIF, oncostatin M, interleukin 6, and interleukin 11-had similar effects on increasing ChAT activity and reducing 5HT expression in RN46A cells. Analysis of 5HT levels showed no significant difference in the amount of serotonin between wild-type and CNTFR alpha knockout mice at birth, suggesting that the potential to switch phenotype mediated through CNTFR alpha is a latent property of neuroepithelial precursors in the raphe nucleus.  相似文献   

8.
Ciliary neurotrophic factor (CNTF) exerts a multiplicity of effects on a broad spectrum of target cells, including retinal neurons. To investigate how this functional complexity relates to the regulation of CNTF receptor alpha (CNTFR alpha) expression, we have studied the developmental expression of the receptor protein in chick retina by using immunocytochemistry. During the course of development, the receptor is expressed in all retinal layers, but three levels of specificity can be observed. First, the expression is regulated temporally with immunoreactivity observed in ganglion cells (embryonic day 8 [E8] to adult), photoreceptor precursors (E8-E12), amacrine cells (E10 to adult), bipolar cells (E12-E18), differentiated rods (E18 to adult), and horizontal cells (adult). Second, expression is restricted to distinct subpopulations of principal retinal neurons: preferentially, large ganglion cells; subpopulations of amacrine cells, including a particular type of cholinergic neuron; a distinctly located type of bipolar cell; and rod photoreceptors. Third, expression exhibits subcellular restriction: it is confined largely to dendrites in mature amacrine cells and is restricted entirely to outer segments in mature rods. These data correlate with CNTF effects on the survival of ganglion cells and mature photoreceptors, the in vitro differentiation of photoreceptor precursors and cholinergic amacrine cells, and the number of bipolar cells in culture described here or in previous studies. Thus, our results demonstrate an exceptional degree of complexity with respect to the regulation of neuronal CNTFR alpha expression in a defined model system. This suggests that the same signaling pathway is used to mediate a variety of regulatory influences, depending on the developmental stage and cell type.  相似文献   

9.
The trunk neural crest of vertebrate embryos is a transient collection of precursor cells present along the dorsal aspect of the neural tube. These cells migrate on two distinct pathways and give rise to specific derivatives in precise embryonic locations. One group of crest cells migrates early on a ventral pathway and generates neurons and glial cells. A later-dispersing group migrates laterally and gives rise to melanocytes in the skin. These observations raise the possibility that the appearance of distinct derivatives in different embryonic locations is a consequence of lineage restrictions specified before or soon after the onset of neural crest cell migration. To test this notion, we have assessed when and in what order distinct cell fates are specified during neural crest development. We determined the proportions of different types of precursor cells in cultured neural crest populations immediately after emergence from the neural tube and at intervals as development proceeds. We found that the initial neural crest population was a heterogeneous mixture of precursors almost half of which generated single-phenotype clones. Distinct neurogenic and melanogenic sublineages were also present in the outgrowth population almost immediately, but melanogenic precursors dispersed from the neural tube only after many neurogenic precursors had already done so. A discrete fate-restricted neuronal precursor population was distinguished before entirely separate fate-restricted melanocyte and glial precursor populations were present, and well before initial neuronal differentiation. Taken together, our results demonstrate that lineage-restricted subpopulations constitute a major portion of the initial neural crest population and that neural crest diversification occurs well before overt differentiation by the asynchronous restriction of distinct cell fates. Thus, the different morphogenetic and differentiative behavior of neural crest subsets in vivo may result from earlier cell fate-specification events that generate developmentally distinct subpopulations that respond differentially to environmental cues.  相似文献   

10.
The early phases of T-cell development require both cell-cell interactions and soluble factors provided by stromal cells within the thymic microenvironment. Still, the precise nature of the signals delivered in vivo by cytokines (resulting in survival, proliferation or differentiation) remains unclear. Recent studies using mice deficient in cytokines or in their receptors have helped to identify essential signaling pathways required for the development of intrathymic precursors to mature alpha beta and gamma delta T cells. In addition, cytokine requirements for the development of natural killer cells were revealed in such mutants. The results obtained demonstrate that the development of all classes of lymphocytes (natural killer, gamma delta T cells and alpha beta T cells) is cytokine dependent, but the specific requirements differ for each lineage.  相似文献   

11.
The involvement of focal adhesion kinase (FAK) in myeloid differentiation was investigated in primary murine bone marrow (BM) cells. In unstimulated BM, FAK mRNA was detected in myeloid and lymphoid cells, but not in erythroid precursors. When the BM cells were incubated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3), FAK expression showed a remarkable difference depending on the cytokine. Although FAK was upregulated in the cells stimulated by GM-CSF (GM-treated cells), the kinase was barely detectable in the cells cultured with IL-3 (IL-3-treated cells). Morphology and flow cytometry analysis showed GM-CSF promoted the growth and differentiation of monocyte/macrophage lineage stronger than IL-3. In addition, motility of the cytokine-differentiated cells showed an overt distinction between the cultures, which was closely correlated with FAK expression. After 7 days of stimulation, GM-treated cells showed active migration and chemoattractant-induced morphologic polarization. In contrast, IL-3-treated cells showed minimal migration and polarization. These results suggest an important role of GM-CSF in the terminal differentiation of monocytes/macrophages, and possible involvement of FAK in functional maturity of this lineage.  相似文献   

12.
13.
14.
Terminal deoxynucleotidyl transferase (TdT)-positive cells in human bone marrow (BM) are a phenotypically inhomogeneous population of precursor cells. In their majority, these TdT+ cells are unambiguously committed to the B lineage, as evidenced by CD19 expression. However, TdT+ precursors that lack CD19 also exist and these may encompass a differentiation potential for the B as well as for other lineages. Because recent data suggested that CD19 expression is not the earliest differentiation event in B-cell ontogeny, we sought to reevaluate TdT+ lymphoid precursors in pediatric BM to define the phenotypic denominator of B-lineage affiliation upstream of CD19. Using four-color flow cytometry, we focused on the assessment of the CD79a antigen, which is highly B-cell specific and which may also be expressed very early in B-cell ontogeny. We found that a majority of TdT+ cells coexpressed CD19 and CD79a in addition to CD10 and CD34, whereas, in all investigated samples, some TdT+ precursors lacked CD19 but expressed CD79a, which suggestively indicates also their B-lineage affiliation. In contrast to the CD19(+) precursors, which were usually CD10(hi) and CD79b+, these CD19(-)CD79a+ putative B-cell precursors preferentially expressed CD10 at low levels and were CD79b+ in only 41%. About 17% of these TdT+CD19(-)CD79a+ precursors also coexpressed CD33 and CD7, but not myeloperoxidase, CD14, or cytoplasmic CD3, which is discussed in the light of cellular activation rather than lineage promiscuity. Our data confirm that the earliest differentiation stages of B cells can be dissected upon expression of the lineage antigens CD79a and CD19 and imply that CD79a is earlier expressed than CD19. This raises the chance to follow the sequential events heralding B-cell commitment in the most immature precursors by correlating phenotypic and genetic differentiation markers.  相似文献   

15.
B cell development is influenced by interactions between B cell progenitors and stromal cells. The precise mechanisms by which these interactions regulate B cell differentiation are currently unknown. Flt3 ligand (FL) is a growth factor which stimulates the proliferation of stem cells and early progenitors. Mice deficient for the FLT3 receptor exhibit severe reductions in early B lymphoid progenitors. We have previously described a clonal assay in vitro which allows us to follow the entire B cell differentiation pathway from uncommitted progenitors to mature, immunoglobulin-secreting plasma cells. The growth factor combination of interleukin (IL)-11, mast cell growth factor (MGF) and IL-7 was shown to maintain the differentiation of these hematopoietic precursors into B cell progenitors capable of giving rise to functionally mature B cells in secondary cultures. Here, we show that FL in combination with IL-11 and IL-7 is sufficient to support the differentiation of uncommitted progenitors from day 10 yolk sac (AA4.1+) or day 12 fetal liver (AA4.1+ B220- Mac-1- Sca-1+) into the B lineage. The frequency of B cell progenitors obtained in these conditions was similar, if not better, than the frequency of B cell precursors that arose when cultured in IL-11+MGF+IL-7. Furthermore, the growth factor combination of IL-11+FL+ IL-7 was able to maintain the potential of bipotent precursors giving rise to both the B and myeloid lineages in secondary cultures. We also show that FL synergizes with IL-7 in the proliferation of committed B220+ pro-B cells and may contribute to the maintenance of an earlier pro-B cell population. Together, these results show that FL is important in supporting the differentiation and proliferation of early B cell progenitors in vitro.  相似文献   

16.
The myelin sheath in the vertebrate CNS is formed by oligodendrocytes. The number of oligodendrocytes in a mature axon tract must be sufficient to myelinate all appropriate axons. How the number of oligodendrocytes is matched to axonal requirements and whether such matching involves axon-oligodendrocyte signaling or intrinsic oligodendrocyte self-regulation are not clear. Using a combination of in vitro analyses, we demonstrate that oligodendrocyte precursors closely regulate their numbers through interactions between adjacent precursors. In low-density rat spinal cord cultures, the number of oligodendrocyte lineage cells increases rapidly. The addition of large numbers of oligodendrocyte precursors substantially reduces precursor expansion and results in a normalization of oligodendrocyte lineage cell numbers in the cultures over time. Thus, the number of oligodendrocyte lineage cells that develop appears dependent on the density of oligodendrocyte lineage cells. This normalization of cell number is reflected in assays of clonal potential and proliferation. For example, precursors gave rise to fewer progeny and proliferated less at high density. Reduced precursor expansion at high density was not attributable to the depletion of growth factors. Cocultures of high and low densities did not inhibit precursor expansion in low-density cultures, suggesting the requirement for local cell-cell interactions. The inhibition of precursor expansion was cell-type-specific and dependent on the presence of oligodendrocyte lineage cells. We propose that this density-dependent feedback inhibition of oligodendrocyte precursor expansion may play a primary role in regulating the number of oligodendrocytes in the developing spinal cord.  相似文献   

17.
18.
19.
Osteoclasts are hematopoietic cells essential for bone resorption. To study the derivation of these interesting cells, we developed a stepwise culture system where stromal cells promote embryonic stem (ES) cells to differentiate into mature osteoclasts. Three phases to this differentiation process include (1) induction of hematopoiesis, along with the generation of osteoclast precursors, (2) expansion of these precursors, and (3) terminal differentiation into mature osteoclasts in the presence of 1alpha,25-dihydroxyvitamine D3 . Although the transition of ES cells to the hematopoietic lineage was not blocked by an antibody to c-fms, later phases were dependent on a signaling through this transmembrane receptor as indicated by the finding that anti-c-fms treatment of cells in the second and third phases reduced the number of osteoclasts produced by 75% and more than 99%, respectively. Blockade of signaling through another tyrosine kinase-type receptor, c-kit, did not affect any stages of osteoclastogenesis, although generation of other hemopoietic lineages was reduced to less than 10% of untreated. When small numbers of ES cells were directly cultured under conditions that promote osteoclast differentiation, tartrate-resistant acid phosphatase-positive multinucleated cells were observed at the edge but not inside of colonies. This suggests that some types of cell-cell interactions may inhibit development of mature osteoclasts. The culture system developed here provides an important tool for osteoclast biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号