首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modes of initiation and propagation of corrosion attack on a series of high-temperature alloys were studied in synthetic gas mixtures at 900°C. The gas mixtures were intended to simulate the oxygen and sulfur partial pressures experienced in reducing zones in a coal-fired fluidized-bed combustor and comprised mixtures of CO, CO2, and SO2. The alloys studied were candidates for in-bed heat exchanger tubing for an air-heater cycle operating at 843°C and 300–500 psig and so ranged from type 300-series stainless steels to nickel-base alloys. With the exception of two FeCrAlY alloys and types 304 and 347 stainless steels, it was found that sulfidation corrosion could be initiated on all the alloys within 0.25 hr; the rate of propagation of the corrosive attack depended on the flux of SO2 in the environment and on the nickel content of the alloys. The presence of iron in the alloys appeared to slow the initiation of sulfidation, by forming a continuous iron oxide layer. The effects of various alloying additions are discussed, and a schematic model for the initiation of sulfidation is proposed.  相似文献   

2.
The effect of preoxidation was studied on the subsequent sulfidation in sulfur vapor at a pressure of 0.1 atm at 982°C on numerous iron, nickel, and cobalt-base alloys which were either chromia or alumina formers. In general, alumina films were much more protective than chromia films, but the efficacy of preoxidation in reducing sulfidation rates depended more upon perfection of the films and whether cracking and/or spatting occurred. Increasing oxidefilm thickness had a beneficial effect until either penetration of the films by sulfur or cracking occurred, after which sulfidation rates were sometimes greater than for nonpreoxidized samples. The enhanced sulfidation rates are attributed to sulfidation of a solute-depleted substrate, the solute having been selectively removed by oxide formation. One alloy, MA 956, containing 0.5 Y2O3 as fine dispersions which normally provide spatting resistance, still exhibited extensive cracking and spalling of the oxide and was not much better than alloys without dispersoids or reactive-metal additions. The use of preoxidation to reduce sulfidation rates is not viable under the extreme conditions used. Preoxidation is conceptually a good method for inhibiting sulfidation at lower temperatures and much lower sulfur pressures.  相似文献   

3.
Fe–Ni–Cr alloys containing different contents of Si with and without pre-formed oxide scale at the surface were tested in oxidation environments at 1,050?°C with varied sulfur partial pressures. The oxide-scale growth on Fe–Ni–Cr alloys was accelerated by increasing sulfur partial pressures in the oxidizing-carburizing environments. This accelerated oxidation was characterized by the formation of plate-shaped MnCr2O4 spinel crystallites and the nodular clusters at the site of scale spallation. Pre-oxidized Fe–Ni–Cr alloys generally did not suffer from sulfur attack because of excellent protection of pre-formed oxide scale. Scale spallation and sulfur attack were found only on high-Si alloy subjected to the maximum sulfur potential, which was attributed to accelerated oxidation and selective oxidation and sulfidation at the sites where oxide scale spallation had occurred. For bare alloys in absence of pre-formed oxide layers, scale spallation was found to occur at lower level of sulfur potential on low-Si alloy than on high-Si alloy. A higher content of Si is necessary for the formation of protective silica sub-layer, which is believed to be the main cause of the difference in scale spallation observed.  相似文献   

4.
The simultaneous oxidation and sulfidation of Fe-25Cr, Fe-25Cr-5Al and Fe-25Cr-10Al alloys were studied at 1023, 1123, and 1223 K in H2-H2O-H2S gas mixtures. Fe-25Cr and aluminum-rich alloys with 0–10 wt.% Al show, in H2H2O-H2S gas mixtures at high temperatures, a transition from protective oxide-scale formation to the formation of a sulfide-rich corrosion product. The kinetics boundary, which indicates the transition from oxide formation with slow weight gains to sulfide formation with rapid weight gains, has been found in these three alloys. The critical oxygen partial pressures to stabilize oxide formation at the constant-sulfur partial pressures of aluminum-rich Fe-25Cr alloys were systematically below those of Fe-25Cr alloy. When the oxygen partial pressure is much higher than the critical one, the oxide scale formed on the Fe-25Cr alloy was mainly Cr2O3 with a small amount of FeCr2O4; on the other hand, the oxide scale formed on the aluminum-rich Fe-25Cr alloys was mainly Fe(Cr,Al)2O4 with a small amount of Al2O3 and Cr2O3. The thermodynamic stability diagrams for (Fe, Cr, Al) -S-O systems were constructed, and the experimental results which show the existence of Fe(Cr, Al)2O4 in the simultaneous sulfidation and oxidation of aluminum-rich Fe-25Cr alloys are explained by these diagrams. The reaction kinetics were measured by a stainless-steel spring balance, and the reaction products were characterized by x-ray diffraction, Auger spectroscopy, and scanning electron microscopy. The reaction rate usually decreased with an increase of the oxygen partial pressure at a constant sulfur partial pressure. The existence of aluminum plays an important role to suppress the sulfidation of Fe-25Cr alloys.  相似文献   

5.
The corrosion of pure niobium has been studied at 600–800°C in various environments as part of a study of the corrosion resistance of its alloys with iron, cobalt, and nickel to atmospheres of low-oxygen and/or high-sulfur activities. The results have shown that not only the sulfidation but also the corrosion in mixed atmospheres and particularly the oxidation under low oxygen pressures of pure niobium are quite slow, with kinetics rather similar in the three types of gas mixtures used. The good corrosion resistance of niobium to attack by oxygen under low pressures is quite interesting because this element is corroded very rapidly by oxygen under high oxygen pressures, due to the formation of the nonprotective highest oxide Nb2O5 as a main corrosion product.  相似文献   

6.
Fe-30Cr alloy specimens were pre-oxidized at two different oxygen partial pressures (10?16 and 10?19 atm) at 900°C and subsequently exposed to environments containing both oxygen and sulfur. The sulfur and oxygen partial pressures were maintained such that Cr2O3 was the stable phase. The Cr2O3 scales formed during pre-oxidation became rapidly unstable when exposed to an environment whose composition approached the chromium sulfide-chromium oxide phase boundary; but when exposed to a higher oxygen partial pressure with the same sulfur partial pressure, the preformed scales remained intact. For elucidating the sulfidation mechanisms, the reaction products on the surface were analyzed at different stages of sulfidation by X-ray photo-electron spectroscopy and Auger electron spectroscopy. Correlation of the reaction mechanisms with thermodynamic and transport parameters are discussed.  相似文献   

7.
Alloys of composition (in weight percent) Fe-10Mn-10Cr, Fe-10Mn-25Cr, and Fe-25Mn-10Cr were reacted at temperatures of 973 and 1073 K with flowing hydrogen-hydrogen sulfide mixtures corresponding to equilibrium sulfur partial pressures of 10?3 and 8 Pa. Sulfide-scale-growth kinetics and morphologies were compared with those found on pure iron and on the binary alloys Fe-25Cr and Fe-25Mn. All alloys reacted according to parabolic kinetics after an initial period of slow approach to this steady state. Of the materials examined, the binary Fe-25Mn showed the slowest sulfidation rates, except at 973 K and a sulfur pressure of 8 Pa, where Fe-10Mn-25Cr had the best performance. Ternary alloys provided improved performance only when a scale layer of Cr3S4 was formed, an event dependent on temperature and sulfur activity. Multilayered scales were always formed on the ternary alloys, and the role of these layers in controlling sulfidation rates is discussed.  相似文献   

8.
Three ferritic stainless steels, types 410, 430, and 446, containing 12, 17, and 26% Cr, respectively, and two high-purity binary alloys, Fe-19Cr and Fe-24Cr, were subjected to molten tholeiitic basaltic lava with a cover gas simulating magmatic gas at 1150°C for periods up to 400 hr. The oxygen and sulfur partial pressures were 9.8×10?10 and 7.0×10?3, respectively. All alloys formed Cr2O3 scales. Internal sulfidation occurred in the commercial alloys resulting in the formation of chromium and manganese sulfides. Internal oxidation of silicon also occurred. The extent of internal sulfidation decreased with increasing chromium content. There was a “critical” chromium content between 12 and 17%, above which internal sulfidation did not occur in 96 hr. However, the “critical” chromium level increased with exposure time to nearly 26% for 400 hr. Little internal sulfidation was observed in the high-purity alloys. The different behavior between the commercial and high-purity alloys may be attributed to (i) the formation of more perfect scales on the latter, which inhibited the inward migration of sulfur, and (ii) changes in the sulfur activity gradient across the scale caused by the presence of silicon and manganese.  相似文献   

9.
Harper  M. A.  Cotner  J. P. 《Oxidation of Metals》2000,53(5-6):427-449
A sulfidation/carburization study of seven commercial heat-resistant alloyswas carried out at 900°C in a H2–25 vol.%CH4–14.8N2–4CO–0.6CO2–0.6H2Satmosphere. The equilibrium partial pressures for oxygen (O2) andsulfur (S2) were 1.1×10–22 and 4.1×10–8 atm,respectively, and the carbon activity for this system was unity. The time ofexposure was 500 hr. Relatively thick, mixed sulfide scales were formed onall of the alloys tested. In addition, internal carburization occurred inall of the alloys. Using metal loss (i.e., the reduction in samplethickness) plus internal attack (internal sulfidation plus internalcarburization) as a performance criterion, an alloy with a nominalcomposition of Ni–29 wt.% Co–28Cr–2.75Si performed thebest, showing 0.71 mm of attack. An alloy with a nominal composition ofFe–20 wt.% Ni–25Cr performed the worst, being totally consumedby the test (>3.18 mm of attack). Alloys containing relatively highamounts of silicon (>2.5%) showed a dramatic increase in theirsulfidation resistance compared to the other alloys containing lowersilicon contents. The amount of iron present within a given material playeda dominant role in the carburization attack that occurred, with as expected,high-iron alloys showing significant internal carburization because of ahigh solubility and diffusivity of carbon in the matrix. The importance ofthe various alloying elements with respect to sulfidation and carburizationresistance is discussed.  相似文献   

10.
The sulfidation behaviour of four nickel aluminium alloys containing 25 to 45 at.% Al was studied over the temperature range of 750 to 950°C in a gas mixture of H2-H2S (0.1 to 10 vol.%). The sulfidation kinetics were determined using a continous weight gain system. The corrosion products were examined by SEM, EDX and XRD. Sulfidation in H2-H2S gas mixtures formed bilayered scales consisting of an outer layer of Ni3S2 and an inner layer of NiAl3,5S5,5 on all alloys regardless of the different aluminium contents. In H2-H2S gas mixtures the sulfidation kinetic generally followed the parabolic rate law for all alloys. The influence of aluminium content on corrosion rate was relatively low. The influence of low oxygen partial pressure on sulfidation was investigated in H2-H2S-H2O mixtures. In these atmospheres the corrosion mechanism is completely different. Severe attack by rapid internal oxidation destroyed all the alloys except Ni25Al (25 at.%Al). The internal oxidation zone consisted of a mixture of γ-Ni3Al and Al2O3. On the alloys containing 36 and 45 at.% Al local attack occurred, fast growing pocks were observed after an incubation period. Nickel aluminides show this corrosion phenomena only in H2-H2S-H2O mixtures. An interruption of the H2S gas flow stops the running internal oxidation. In flowing H2-H2O atmospheres no internal oxidation was observed. These facts prove that H2S is necessary for starting and maintaining the internal oxidation of the nickel aluminides.  相似文献   

11.
The presence of a fine dispersion of a stable oxide is known to have a beneficial effect on the oxidation resistance of nickel- and cobalt-base heat-resisting alloys. This paper presents some preliminary experimental results relating to the hot-corrosion resistance of these alloys. Alloys forming Cr 2O3 scales appear to be resistant to oxidation when coated with sodium sulfate, whereas an alloy normally forming an Al 2O3 scale suffers accelerated attack. During sulfidation some of the alloys suffer an accelerated degradation, with sulfur penetrating rapidly along what appear to be grain boundaries. The same effect is noted in sulfidation-oxidation experiments, when the Cr 2O3-forming alloys suffer accelerated oxidation, the effect of the dispersoid being apparently removed. An Al 2O3-forming alloy resists this form of attack well. The sodium sulfate-coated test is probably a good guide to the behavior under weakly corroding conditions, whereas the sulfidation-oxidation test may give a better indication of the behavior under highly aggressive conditions.  相似文献   

12.
还原性气氛中HCl和H2S导致Fe-Cr合金在700℃的加速失效   总被引:1,自引:0,他引:1  
潘太军  鲁伟明  曾潮流  牛焱 《金属学报》2007,43(12):1261-1267
研究了Fe-8Cr,Fe-12Cr和Fe-18Cr合金在700℃含氯和两种硫含量还原性气氛中的腐蚀行为.气氛中H2S含量增加导致合金发生加速腐蚀,尤其造成Fe-18Cr合金表面氧化铬膜退化.合金的加速腐蚀与膜中生成的硫化物和氯化物密切相关.合金的腐蚀速率随其Cr含量的升高而降低.通过计算气氛中平衡时的氯势、氧势、硫势预测了合金与气氛可能发生的反应,并解释了腐蚀机制.  相似文献   

13.
Fe-Cr alloys with 17–30% Cr show in H2-H2O-H2S mixtures at 1273 and 1073 K a transition from protective oxide scale formation to rapid sulfidation. The critical oxygen pressure to stabilize the oxide formation increases with increasing sulfur pressure of the gas and decreasing Cr content of the alloy. Cr2O3 with traces of Fe2O3 is formed under these conditions. Below the critical oxygen pressure, a primarily formed Cr2O3 film becomes overgrown by (Fe, Cr)S. The kinetic boundary of oxidation-sulfidation, which lies in the stability field (Fe, Cr)S + spinel Fe1+xCr2–xO4 of the Fe-Cr-O-S phase diagram, is explained with the help of the Fe-Cr-O-S phase diagram and the assumption that Fe diffuses faster through the (Cr, Fe)2O3 solid solution than does Cr.  相似文献   

14.
The sulfidation/oxidation and carburization resistances of a Ni3Al(Mo) (IC-6) alloy at high temperatures were investigated in this work. The corrosion kinetics of the IC-6 alloy was found to follow parabolic rate law in an environment of high partial pressures of sulfur (10−5 atm) and low partial pressures of oxygen (<10−20 atm) at 700 °C. Because the Ni sulfides are readily formed at the testing temperature, the sulfidation/oxidation resistance of the IC-6 alloy is similar to that of commercial Ni–Cr alloys in the current environments, although IC-6 is alloyed with Al. Compared with the HP heat resistant steel which is commonly used in the petrochemical industry, the IC-6 alloy possesses significantly improved resistance to carburization at 1100 °C. The mechanisms governing the corrosion attack in the environments used in this investigation were also discussed.  相似文献   

15.
Iron-molybdenum alloys containing up to 40 wt.% molybdenum were exposed to sulfur vapor at a partial pressure of 0.01 atm at temperatures of 600–900°C. Sulfidation kinetics were measured over periods of up to 8 hr using a quartz-spring thermogravimetric method. The sulfidation kinetics of all alloys studied obeyed the parabolic rate law. The sulfidation rate of iron was found to be reduced by factors of 60 at 900°C and 120 at 600°C by the addition of 40 wt.% molybdenum. Duplex sulfide scales formed on all alloys at all temperatures, the scales consisting of an inner layer of mostly MoS2 and an outer layer of FeS. Platinum markers were located at the interface between the outer and inner scales, showing that outward iron diffusion and inward sulfur diffusion through the inner layer occurred. The improved sulfidation resistance was attributed to the formation of the MoS2, which acted as a partially protective barrier to the diffusion of the reacting species. Sulfidation activation energies were found to range from 24.3 to 28.5 kcal mole for the alloys compared to 20.6 kcal/mole, for pure iron. The rate-controlling step was outward iron diffusion through the outer iron sulfide layer.  相似文献   

16.
This investigation involves the corrosion behavior of two Fe–Ni–Cr alloys containing different Si content at 1050?°C in carburizing-oxidizing environments (typical of ethylene pyrolysis) with varied concentration of H2S. High-Si containing alloy could form thinner but less uniform oxide scale than low-Si alloy after pre-oxidation due to the barrier effect of continuous SiO2 at interface of scale/substrate. Pre-oxidized alloy showed a better resistance to carburization/sulfidation attacks than the bare alloy in absence of pre-oxidation. It was found that carburization and sulfidation of the Fe–Ni–Cr alloys could be prevented in the environment with a ratio of $ P_{{{\text{H}}_{ 2} {\text{S}}}} /P_{{{\text{H}}_{ 2} }} $ at 1.7?×?10?5. When the sulfur partial pressure was lower than this value, oxides were found to be converted to porous and non-protective carbides. When the sulfur potentials were increased, manganese or chromium sulfide on outer layer and internal sulfide stringers mixed with silicon oxide in substrate could be formed. Under high sulfur partial pressures, spallation of outer sulfide or oxide scale was observed on high-Si alloy due to less stability of oxide layer formed at surface which was converted to sulfide faster than on low-Si alloy.  相似文献   

17.
The corrosion of pure Co and Y and of a Co-15 wt.% Y alloy in H2-H2S mixtures providing a sulfur pressure of 10–8 atm. at 600–800°C and also of 10–7 atm. at 800°C was was studied to examine the effect of yttrium on the sulfidation resistance of pure cobalt. The alloy was nearly single phase, containing mostly the intermetallic compound Co17Y2 plus a small amount of cobalt solid-solution. For all conditions except for 800°C under 10–8 atm. S2, the alloy formed multilayered scales consisting of an outer region of pure cobalt sulfide, an intermediate region of a mixture of cobalt sulfide with yttrium oxysulfide and finally an innermost layer of a mixture of yttrium oxysu fide with cobalt metal. At 800°C under 10–8 atm. S2, below the dissociation pressure of cobalt sulfide, the alloy formed only a single layer composed of a mixture of metallic cobalt with yttrium oxysulfide. Pure yttrium produced only the oxysulfide Y2O2S, as a result of the large stability of this compound and of the presence of some impurities in the gas mixtures used. The corrosion kinetics were generally rather complex, but except at 800°C under 10–8 atm. S2, the addition of yttrium reduced the sulfidation rate of cobalt, even though the formation of a continuous protective external layer of a pure yttrium compound was never achieved. Finally, when the gas-phase sulfur pressure was above the dissociation of cobalt sulfide the corrosion rate of yttrium was significantly lower than that of Co-15 Y. The internal sulfidation of Y in Co-15 Y was not associated with depletion of Y in the alloy. This difusionless kind of internal attack is typical of binary A-B alloys presenting a very small solubility of the most-reactive component B in the base metal A, which restricts severely the flux of B from the alloy toward the alloy-scale interface.  相似文献   

18.
《Intermetallics》2000,8(4):371-379
High temperature oxidation properties of TiAl- (1,2,4 and 10) Cr and 40Ti-56Al–4Cr alloys, which were sulfidized at 1173 K for 86.4 ks at 1.3 Pa sulfur partial pressure in a H2–H2S gas mixture, were investigated at 1173 K in air for up to 2.7 Ms. The sulfidation processing formed a (Cr,Ti)Al2 layer between a TiAl3 (TiAl2 included) layer and a Ti-rich sulfide scale by selective sulfidation of Ti. Oxidation of the sulfidation-processed alloys was examined for up to 2.7 Ms in air under isothermal and room temperature to 1173 K heat cycle conditions. In both oxidation experiments the sulfidation processed TiAl–10Cr alloy showed very good oxidation resistance up to 2.7 Ms, due to the formation of a continuous Ti(CrAl)2 Laves layer, which was changed from (Cr,Ti)Al2 and has a composition of 28.7Cr–36.2Al–35.1Ti, between the layers of protective Al2O3 (TiO2 included) and TiAl2, which was changed from TiAl3. The sulfidation processed TiAl, TiAl–4Cr, and 40Ti–56Al–4Cr alloys showed better oxidation resistance than conventional TiAl based alloys, but displayed localized oxidation. The Ti(Cr,Al)2 Laves on the sulfidation processed TiAl–4Cr alloy was discontinuous, leading to a localized oxidation after long oxidation. The sulfidation processed 40Ti–56Al–4Cr alloy oxidized faster than the sulfidation processed TiAl–10Cr alloy due to the formation of an Al2O3 and TiO2 mixture, although the TiAl2 layer remains. It was concluded that the Ti(Cr,Al)2 Laves layer between the oxide scale and alloy substrate caused the good oxidation resistance.  相似文献   

19.
The influence of aluminium on the kinetics and mechanism of high-temperature sulfidation of Fe-Cr alloys containing 20 at.% chromium has been investigated. It has been found that the addition of aluminum greatly improves the scaling resistance of Fe-Cr alloys against attack by sulfur vapors at high temperatures.  相似文献   

20.
The simultaneous sulfidation and oxidation of Fe-25Cr, Fe-25Cr-4.3Ti, Fe-25Cr-7.5Nb, and Fe-25Cr-9.0 Mn alloys were studied at 1023, 1123, and 1223 K, respectively, in H2-H2O -H2S gas mixtures. The influences of titanium, niobium, and manganese on the transition from protective oxide formation to the formation of sulfide-rich corrosion products of Fe-25Cr alloys have been investigated. It has been found that additions of titanium and niobium can improve the scaling resistance of Fe-25Cr alloys against sulfidation in H2 -H2O -H2S gas mixtures at high temperatures. However, the addition of manganese does not increase the resistance to sulfidation of Fe-25Cr alloy. The oxide Cr2Ti2O7, which can suppress sulfide formation, formed on the Fe-25Cr-4.3Ti alloy. The addition of manganese to Fe-25Cr does not form more stable and protective oxides than Cr2O3 which formed on Fe-25Cr. Thermodynamic stability diagrams are used to explain the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号