首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过耦合方程建立应力场和瓦斯运移场之间的耦合关系,得到考虑Klinkenberg效应和不考虑Klinkenberg效应时两种气—固全耦合模型的控制方程组,分别应用于同一单孔瓦斯抽采数值模型,对比分析了Klinkenberg效应对瓦斯压力、渗透率和孔隙率动态变化的影响规律,结果表明:Klinkenberg效应通过增大煤层渗透率,有助于瓦斯抽采,且随抽采时间的延长效果更加显著;煤化程度较高的煤在抽采时间较长(大于4个月)时需要考虑Klinkenberg效应的影响;由于渗流场和应力场的强耦合作用,孔隙率、渗透率、煤层瓦斯压力受抽采作用的影响范围同步变化。  相似文献   

2.
为研究钻孔瓦斯抽采渗流规律,为钻孔合理布置提供依据,提出了考虑气-水两相流的瓦斯抽采流固耦合模型。在多孔介质的有效应力原理基础上,考虑瓦斯吸附/解吸产生的应力,推导出煤体应力-应变本构关系;分析水和瓦斯运移的气-水两相流过程,以相对渗透率为桥梁,给出水渗流方程和考虑Klinkenberg效应的瓦斯渗流方程;构建作为耦合项的煤层孔隙率和渗透率动态演化方程,结合成庄矿4321工作面进行数值模拟。结果表明:成庄矿4321底抽巷穿层钻孔瓦斯抽采预抽期定为90 d是合理的,抽采过程中瓦斯渗流速度具有阶段性,增大抽采负压对抽采效果影响不明显;穿层钻孔布置方式为终孔间距9 m,钻场间距9 m。工程实践表明,测得的煤层瓦斯压力变化情况与数值模拟结果基本吻合,抽采后煤层瓦斯含量为6.46~7.67 m~3/t,43212巷瓦斯浓度降低了37%,抽采效果良好。  相似文献   

3.
张磊  王浩盛  袁欣鹏  谷超 《煤炭工程》2022,54(7):104-108
为揭示煤岩变形对煤层瓦斯抽采渗流特性的影响,开展了煤层瓦斯抽采气固耦合问题研究。首先,考虑煤吸附解吸变形、孔隙压力及渗透性变化对瓦斯抽采的影响|然后,根据达西定律,建立以有效应力及吸附应变为耦合媒介的煤层瓦斯渗流和煤岩变形气固耦合方程|最后,以沙曲矿24208工作面为工程背景进行抽采煤层位移、吸附应变和瓦斯渗流数值模拟,并对比分析煤层瓦斯压力、煤层渗透率和瓦斯抽采量的耦合效应。结果表明:抽采后钻孔周围煤体位移呈增大趋势,煤体因瓦斯解吸收缩变形,距抽采孔越近应变量越大|抽采初期煤层瓦斯压降梯度大|煤层渗透率随抽采时间呈增大趋势,距孔越近增幅越大|初期钻孔瓦斯抽采量较大但降幅较快,后趋于稳定,对比发现模型抽采量计算结果与实际抽采数据较为一致。  相似文献   

4.
张玉莹 《煤》2015,(6):18-21
将煤体看作双重孔隙单渗透率的特殊多孔介质,考虑煤层变形引起的孔隙率及渗透率变化,瓦斯的渗流扩散及吸附瓦斯解吸过程,建立了煤层瓦斯抽采固气耦合数学物理模型。利用COMSOL软件,模拟研究了钻孔抽采过程中煤层瓦斯的运移规律。研究结果表明:煤层中某一位置的渗流速度变化曲线会随着其与钻孔距离的变化而变化,距离钻孔越远渗流速度达到最大值所用的时间越长,渗流速度最大值也越小。研究结果对治理煤层瓦斯具有重要意义。  相似文献   

5.
为优化含水煤层瓦斯抽采孔的布置方式,在考虑气—水两相流、应力及温度因素的基础上,建立了能够描述煤层在瓦斯抽采过程中的热流固耦合模型。以平顶山某矿工作面的相关物性参数为基础进行了数值模拟,采用COMSOL Multiphysics高效模拟软件进行科学数值计算模拟。研究得出,含水饱和度对气体的相对渗透率影响显著,而且随着抽采的进行,钻孔周边含水饱和度随之而提高,阻碍了瓦斯抽采工作的进行;在瓦斯抽采过程中,随着抽采时间的进行,压力的变化梯度逐渐变小,且呈现非线性关系;瓦斯抽采过程中需要考虑温度对其影响,温度的变化对煤层渗透率的变化有着重要的作用。故在对煤体进行水力化处理时,需要优先采用排水手段,结果表明在煤体中注入水蒸气可有效提高瓦斯抽采效率。  相似文献   

6.
为揭示瓦斯在深部煤层抽采时的渗流机理,基于深部煤层低渗透率、高地应力、高瓦斯压力特征,结合瓦斯运移的Klinkenberg效应,建立了考虑煤体基质、裂隙双重孔隙介质的瓦斯抽采气固耦合模型,并针对具体地质情况进行了耦合模型的数值模拟研究。结果表明:煤层瓦斯压力随抽采时间增长呈下降趋势,钻孔周围出现瓦斯压降漏斗现象,距钻孔越近瓦斯压力下降越明显。深部低渗透煤层瓦斯抽采过程中,煤层体积变形、瓦斯解吸共同影响煤层渗透率变化,瓦斯抽采使煤层瓦斯压力逐渐降低,煤体发生收缩变形导致渗透率增大,同时煤层有效应力增大,煤层中裂隙、基质受压变形,又会导致渗透率逐渐减小。  相似文献   

7.
为消除基质瓦斯渗流作用对流固耦合模型的影响,准确描述瓦斯在抽采过程中的运移规律,建立了更加符合煤层多孔介质特性的双孔双渗透率模型,提出了考虑Klinkenberg效应和动态瓦斯扩散系数的双孔双渗透流-固耦合模型。利用COMSOL模拟钻孔瓦斯抽采过程,分析煤层钻孔预抽过程中瓦斯的运移规律、渗透率和有效抽采半径的变化。模拟结果表明:Klinkenberg效应能有效促进瓦斯运移,渗透率变化是骨架压缩效应和基质收缩效应共同作用的结果,随着抽采时间的增加,基质收缩效应占主导地位,渗透率逐渐增加;观测点的渗流速度可分为快速上升、缓慢下降和稳定不变三个阶段;瓦斯有效抽采半径与抽采时间和孔径符合幂指函数关系。现场试验与模拟结果基本吻合,验证了理论耦合模型的正确性,为瓦斯抽采设计提供理论基础。  相似文献   

8.
为了考虑长期抽采过程中时间效应对煤体渗透率的影响,结合平均有效应力建立了时间效应和气体解吸效应耦合作用下的深部煤体孔隙率及渗透率演化模型。运用COMSOL Multiphysics对钻孔周围瓦斯运移过程进行了定量计算,结合现场数据对是否考虑时间效应的瓦斯渗流场变化规律进行了对比分析,并对长期抽采过程中深部煤层瓦斯运移规律进行了模拟分析。结果表明:煤层渗透率随瓦斯压力的下降呈指数型上升趋势;考虑时间效应的孔隙率、渗透率模拟结果明显小于未考虑时间效应模型的结果,且随着抽采时间的增长,蠕变本构中的黏弹性元件使得煤体更为致密,深部煤层的时间效应越发明显,考虑时间效应的孔隙率、渗透率模拟结果与未考虑时间效应的结果差值逐渐增大;考虑时间效应的模拟结果与现场数据匹配度较高,更符合深部煤层孔隙率和渗透率的实际演化特征。在同一抽采时刻,随着距钻孔中心距离的减小,渗透率呈现升高的趋势,压力呈现降低的趋势,当模拟抽采时间为1 d时,临近钻孔中心处渗透率较大、瓦斯压力较小;在不同抽采时刻,当抽采时间逐渐增长时,相同位置处的渗透率逐渐增大,瓦斯压力逐渐减小,当抽采时间由1 d增至30 d时,临近钻孔中心处的渗透率增长近1. 4倍,瓦斯压力降低近3. 8倍,且模型内渗透率与瓦斯压力的演化趋于平衡状态。  相似文献   

9.
随着矿井开采深度的增加,地应力、瓦斯压力、煤体特性等因素的变化对瓦斯渗流的影响越来越明显。根据钻孔抽放瓦斯的渗流特性与固体变形的基本理论,引入了固体力学和多孔介质流耦合的控制方程,同时考虑了分子滑脱效应对渗流的影响。建立了考虑抽放钻孔在不同的地应力、不同初始渗透率和不同抽放负压条件下,瓦斯运移与煤体变形相耦合作用的数学模型。通过研究钻孔抽放瓦斯过程中,在不同地应力和瓦斯压力的影响下,得出煤层渗透率和瓦斯运移的变化规律。  相似文献   

10.
随着矿井开采深度的增加,地应力、瓦斯压力、煤体特性等因素的变化对瓦斯渗流的影响越来越明显。根据钻孔抽放瓦斯的渗流特性与固体变形的基本理论,引入了固体力学和多孔介质流耦合的控制方程,同时考虑了分子滑脱效应对渗流的影响。建立了考虑抽放钻孔在不同的地应力、不同初始渗透率和不同抽放负压条件下,瓦斯运移与煤体变形相耦合作用的数学模型。通过研究钻孔抽放瓦斯过程中,在不同地应力和瓦斯压力的影响下,得出煤层渗透率和瓦斯运移的变化规律。  相似文献   

11.
《煤矿开采》2013,(5):109-111
瓦斯抽采对于立井揭煤具有重要的作用,传统的瓦斯抽采设计常依据经验或仅靠瓦斯在煤层中流动服从达西定律和质量守恒定律来判断和设计瓦斯抽采工程,没有考虑瓦斯的吸附作用和应力对煤层瓦斯流动的影响。在考虑流固耦合和瓦斯吸附作用的基础上建立了瓦斯流动方程,同时对不同煤层围岩应力下瓦斯流动情况作了分析,指出了围岩应力大小对瓦斯抽采具有重要的影响,围岩压力增大会导致瓦斯难抽出,残余瓦斯压力大;围岩压力越大,煤层渗透率越低。  相似文献   

12.
为了提高煤层瓦斯抽采效果预测的准确性,揭示瓦斯抽采过程中煤层各参数的变化规律,基于煤岩结构和瓦斯煤层内运移特征,结合岩体力学、渗流力学、传热学相关理论,建立了煤层瓦斯抽采的流-固-热耦合模型,进行了单裸竖直钻井瓦斯抽采数值模拟,结果表明:所建模型解算结果与工程实际相吻合,能够满足工程需要;在瓦斯抽采过程中煤层温度、瓦斯压力和产气速率均随着抽采时间的增加而减小,瓦斯抽采活动对煤层温度的变化有着很大影响;由于瓦斯吸附量减少和温度降低引起的煤基质应变降低值大于煤层压力降低引起应变增高值,瓦斯抽采影响范围内煤体渗透率不断增高,但受煤层瓦斯运移、解吸速度的影响,煤体渗透率增高速率不断减缓。  相似文献   

13.
顺层钻孔瓦斯抽采半径及布孔间距研究   总被引:2,自引:0,他引:2  
为合理确定本煤层瓦斯抽采钻孔的布孔间距,通过煤层瓦斯渗流场控制方程、煤体孔隙率和渗透率耦合方程及煤层变形场控制方程,建立了钻孔抽采条件下瓦斯渗流固气耦合数学模型;采用数值模拟计算方法,得出顺层瓦斯抽采钻孔的抽采半径,并推导出瓦斯抽采钻孔布孔间距与单钻孔抽采半径的关系式。以黄岩汇矿15107工作面为应用实例,通过在该工作面进行单钻孔和多钻孔瓦斯抽采试验,求算并验证了抽采半径及布孔间距与抽采半径关系式的正确性,为现场瓦斯抽采提供科学依据。  相似文献   

14.
《煤炭技术》2017,(5):172-174
为了探究钻孔瓦斯抽采过程中瓦斯压力随时间的变化规律,通过建立流-固耦合模型,考虑渗透率、孔隙率和体积应变的动态变化,结合矿井煤层物性参数,运用多物理场软件进行了模拟分析。分析结果表明:随着抽采时间的延长,钻孔周围煤体瓦斯压力逐步降低,在瓦斯抽采过程中,瓦斯压力的降低有助于渗透率的提高,但影响效果甚微,埋藏深度对煤层渗透率起主导作用。  相似文献   

15.
为了确定合理的有效抽采区域,首先建立了含瓦斯煤岩体的流-固耦合模型,然后建立几何模型,利用COMSOL Multiphysics软件进行数值解算,在考虑渗透率各向异性的基础上,研究钻孔周围不同位置的瓦斯压力变化规律。结果表明:考虑渗透率各向异性之后,瓦斯压力等值线图呈现出椭圆形状;渗透率各向异性会影响瓦斯在煤体中的运移,渗透率越低,瓦斯在煤层中运移越慢;达西速度与渗透率成正比,即渗透率增大,达西速度随之增大,渗透率各向异性使钻孔周围达西速度等值线呈椭圆分布,越靠近钻孔中心,达西速度越大,且随着时间的增加,达西速度最大值在减小;当钻孔周围瓦斯压力达到0.74 MPa时,受渗透率各向异性的影响其有效抽采区域呈现左右大、上下小的分布,瓦斯在渗透率小的地方难被抽采。  相似文献   

16.
基于弹性力学、渗流力学等理论,建立了地面井预抽瓦斯应力-渗流耦合模型,在此基础上结合工程实例,分析了地应力对瓦斯抽采效果的影响。计算结果表明:在地面井抽采作用下,煤层瓦斯压力不断减小,且地应力越大,瓦斯压力下降速度越慢;随着抽采的持续进行,造成煤体的有效应力增加和渗透率降低,同时由于瓦斯解吸,煤层孔裂隙重新变大和渗透率增加,2种效应共同作用下煤层渗透率总体呈现非线性增加趋势;地应力对地面井抽采效率影响显著,两者呈现负相关关系,即随着地应力的增加,煤层中的基质孔隙率下降和裂隙趋于闭合,造成煤层渗透性下降,最终导致了瓦斯抽采量的下降。  相似文献   

17.
基于考虑煤岩膨胀应力作用的有效应力原理,建立了考虑由瓦斯压力引起的煤基质变形和有效应力耦合效应下的煤储层渗透率动态变化模型,以煤岩变形的应力场方程和煤层瓦斯渗流方程为桥梁,构建了煤层气抽采的多物理场耦合模型。以沁水盆地南部二叠系山西组3#煤层为地质模型进行应用分析,运用Comsol Multiphysics多物理场数值模拟软件,对不同煤层参数及不同工况条件下煤矿区煤层气抽采的孔隙压力场变化规律进行分析,研究发现:煤层气抽采主要受煤层埋藏深度、煤层孔隙度和渗透率影响较为明显,而受抽采负压大小的影响较小。  相似文献   

18.
钻孔预抽煤层瓦斯影响规律研究   总被引:1,自引:0,他引:1  
给定煤层多孔介质渗流边界条件,湍流计算选用k—ε模型,瓦斯在煤层中流动采用多孔介质模型,研究了在不同的抽采时间、负压、渗透率、煤层瓦斯压力及不同的钻孔直径等条件下钻孔的抽采半径及抽采量变化规律,研究结论对于现场预抽煤层瓦斯钻孔参数设计有理论指导意义。  相似文献   

19.
魏晓  刘雄  蒋旭刚 《采矿技术》2022,(6):73-77+81
为了研究煤层在采动条件下,工作面顺层低渗透瓦斯钻孔抽采效果的关键影响因素及煤体瓦斯抽采渗流规律,通过煤层瓦斯渗流控制方程、煤体孔隙率和煤体应力变形控制方程,构建了煤体瓦斯抽采条件下瓦斯流固耦合数学模型;基于多物理场数值分析软件(COMSOLMultiphysics)建立瓦斯抽采数值模型,分析了单孔钻孔距回采工作面不同距离和多孔排布回采工作面不同推进距离下抽采瓦斯压力和消突区域分布。结果表明,抽采钻孔周边瓦斯压力逐渐降低,最终趋于稳定,钻孔距回采工作面越近,瓦斯压力下降速度越快,抽采效率越高,且消突区域随着开采推进距离增大而增大。研究结果为工作面瓦斯抽采钻孔参数的设计优化提供了有益的参考。  相似文献   

20.
为了更好地揭示瓦斯抽采过程中松软低透气性煤层瓦斯运移的本质和规律,基于孔隙-裂隙双重介质的假设,建立了全面考虑有效应力、煤层瓦斯多机制流动、真实气体效应和迂曲度影响的煤层瓦斯多机制流固耦合模型。基于所建理论模型,以郑煤集团(河南)白坪煤业有限公司13181工作面为工程背景,利用COMSOL软件开展煤层瓦斯抽采数值模拟,全面分析了瓦斯压力随抽采时间的动态分布规律,结合现场实测结果验证了数值模拟有效抽采半径的准确性。系统开展了不考虑Klinkenberg效应、不考虑基质瓦斯扩散和不考虑煤层瓦斯多机制流动影响的瓦斯抽采数值模拟,对比分析了不同控制因素对煤层瓦斯运移的影响。研究结果表明:抽采结束后,煤层瓦斯压力以抽采钻孔为中心呈椭圆分布;煤层瓦斯压力和有效抽采半径的变化幅度随抽采时间逐渐减小,并趋于稳定;煤层瓦斯有效抽采半径的数值模拟结果与现场实测结果之间的平均误差为3.65%,验证了所建煤层瓦斯多机制流固耦合模型的有效性与合理性;与考虑煤层瓦斯多机制流动影响的模拟结果相比,不考虑Klinkenberg效应的有效抽采半径和渗透率偏小,而不考虑基质瓦斯扩散和瓦斯多机制流动的有效抽采半径和渗透率则...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号