首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对当前各种基于会话推荐的模型存在对物品间全局关系的获取和使用不足的问题,提出了基于会话的结合全局潜在信息的图神经网络推荐模型。该模型根据全部会话序列构建会话图与全局图,并在全局图中引入了序列中各节点间的间距信息,以及序列节点的相邻节点彼此之间的贡献度,通过模型训练获取最后的会话表征预测下一个交互行为。实验结果表明:在结合图神经网络的推荐算法中充分挖掘全局潜在信息可以有效提高推荐算法的准确率,这一改进对提高基于会话的图神经网络模型的性能有一定指导意义。  相似文献   

2.
针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获物品之间的上下文转换关系,得到物品的图嵌入向量;其次,将图嵌入向量输入兴趣注意力网络中,提取用户的主要兴趣偏好;然后通过注意力层对物品的图嵌入向量进行加权区分;最后,通过预测层得到候选物品的点击概率值并对其进行排序。算法模型在3个公开数据集Diginetica、Retailrocket和Tmall上进行了实验验证,相比基准模型在MRR@20指标上分别有0.942%、1.183%和2.977%的提升,同时降低了模型时间复杂度,验证了该方法的有效性和高效性。  相似文献   

3.
为了给用户提供更好的位置服务,提出了一种位置社交网络中融入时空上下文信息的混合个性化兴趣点推荐模型.在空间上,对用户签到进行层次聚类,对各聚类内二维核密度估计的结果取平均.在时间上,利用用户签到的时间信息、签到的位置信息及社交网络构建转移矩阵,运行改进图的随机游走模型.混合模型融合时空上下文信息做推荐.在真实数据集上的实验结果表明,无论在标准推荐场景还是冷启动场景下,混合推荐模型的准确率和召回率性能均优于基准方法.  相似文献   

4.
基于用户兴趣变化的协同过滤推荐算法   总被引:3,自引:0,他引:3  
协同过滤算法是在众多应用领域中最成功的个性化推荐技术之一,但传统协同过滤算法不能及时反映用户的兴趣变化,致使预测结果不准确。针对这个不足,提出一种基于用户兴趣变化的改进协同过滤算法。改进算法提出一种基于时间的权重函数,用于研究用户在不同时间段的兴趣变化,通过用户兴趣之间的相似性,最后生成推荐结果。实验结果验证了改进算法在推荐的准确性方面得到显著提高。  相似文献   

5.
针对协同过滤推荐系统应用中存在的数据稀疏、可扩展性受限等问题,提出了一种基于用户聚类的二分图网络协同推荐算法.该算法在用户聚类阶段对二分图网络进行用户中心聚类,并获取用户聚类中心及其所在的群组,基于用户群组的评价信息为目标用户提供更广泛的推荐数据;在协同推荐阶段,围绕聚类中心及其所在群组为未评分项目完成预测评分,为用户推荐综合评分最高的Top-n项目.结果表明,该算法能够提升目标用户推荐的准确度,并能改善协同推荐的多样性.  相似文献   

6.
为了提高用户对社交平台的粘性,通过用户的社交关系网来丰富用户的兴趣标签。以微博为例,用户的关注用户可以对用户的内容推荐进行协同性过滤,用户的关注用户的重要性受到自身粉丝数的制约,综合用户兴趣标签和用户社交网络图完成对用户推荐内容的协同过滤。以 Last.fm 数据作为测试数据集,实验结果表明:改进的算法能够较明显地提高推荐的准确度,从而表明融入用户社交关系网进行内容推荐对于提升用户的平台粘性具有一定的作用。  相似文献   

7.
基于BP神经网络的协作过滤推荐算法   总被引:3,自引:0,他引:3  
研究、探讨了协同推荐问题,提出了一种基于两层面的多个后向传播(BP)神经网络的协作过滤推荐算法(TMNN-CFRA). 两层面的多个BP神经网络协同工作,高层面BP网反向误差传播直至低层面多个人工神经网络(ANN)进行网络权值修正,以此为基础,借助用户评价等特征前向给出项目推荐. 标准评测集Movielens上的实验评测表明了TMNN-CFRA的可行性和有效性.  相似文献   

8.
采用矩阵分解方法为模型量化用户对未知位置的签到次数,利用改进的融合用户间签到和好友关系的相似度计算方法计算用户间的相似度,通过聚类方法将用户进行群组划分,最终提出结合聚类和矩阵分解的方法实现个性化位置推荐。相比于基于用户协同过滤和基于矩阵分解推荐算法,本文算法在位置推荐召回率和准确率上均有提高,同时,在推荐运行时间上也优于其他算法。  相似文献   

9.

针对基于异质信息网络的推荐系统难以充分捕捉节点的内容信息以及基于元路径的异质信息挖掘存在链接丢失的问题, 提出一个基于异质信息网络和多任务学习的推荐方法.该方法首先在各个元路径视图上计算不同邻居实例对节点的影响程度, 挖掘元路径内部信息; 接着使用注意力机制学习异质信息网络图的语义信息, 得到异质信息网络中节点的嵌入; 最后采用多任务学习方法同时优化推荐任务和链路预测任务来解决链接丢失问题.在3个公开的异质数据集上进行实验, 结果表明该模型能够充分挖掘异质信息网络的信息, 在推荐任务和链路预测任务上的性能皆优于对比模型.

  相似文献   

10.
针对现有会话推荐采用单一模型无法兼顾全局和局部信息,从而影响推荐性能的问题,提出融合图神经网络和稀疏自注意力的会话推荐模型(SSA-GNN)。模型采用稀疏自注意力构建全局隐向量,以解决无关项的干扰和图神经网络难以表示长距离依赖的问题;采用目标注意图神经网络构建局部隐向量,更深层次的捕获项目间的复杂依赖。最后在预测层将全局和局部隐向量线性连接,有效兼顾了全局和局部信息。模型在Yoochoose1/64数据集上的试验结果比基线模型GC-SAN在评价指标P@20上提高了1.25%,MRR@20上提高了4.59%。  相似文献   

11.
城市化的发展使得交通预测在交通规划和城市管理等应用中发挥着重要作用。然而在交通预测任务中,捕获交通数据的高度非线性和复杂的时空依赖关系仍具有很大的挑战性。为了更好地捕获交通数据的时间依赖性和全局空间相关性以及同时满足长期和短期的预测任务,设计了一种用于交通预测的注意力时空图神经网络。首先通过引入注意力机制来调整邻近道路与非邻近道路的重要性,整合全局空间信息;然后再通过图卷积网络和带有扩展因果卷积的门控线性单元来共同捕获时空相关性。在两个真实数据集PeMSD7(M)和PEMS-BAY上的实验结果表明,该网络模型可以较大地提高短期和长期的交通预测精度。  相似文献   

12.
阐述基于图神经网络的药物-靶标相互作用预测问题的主要变体,并对各种变体的方法进行深入梳理与分析,对常用数据集进行整理与分析,最后对药物-靶标相互作用预测进行总结与展望.  相似文献   

13.
为了对滚动轴承发生的故障类型进行诊断,从而提升设备的安全性,提出了一种基于深度残差神经网络的智能故障诊断方法,并使用多传感器融合技术对深度残差神经网络进行了改进,使得诊断模型的识别精度和鲁棒性得到进一步提高.首先,通过多传感器技术来获取丰富的设备运行状态信息,然后利用时频分析方法短时傅里叶变换提取原始振动信号的初级特征...  相似文献   

14.
针对水质数据在时间和空间维度上的复杂依赖关系,提出基于图神经网络(GNN)的地表水水质预测模型. 该模型采用GNN建模地表水水质监测站点在空间上的复杂依赖关系,使用长短时记忆网络(LSTM)建模水质指标序列在时间上的复杂依赖关系,将编码结果输入到解码器中得到预测输出. 实验结果表明,与时间序列分析方法、通用回归方法和一般深度学习方法相比,该模型能够实现23.3%、26.6%和14.8%的性能提升.  相似文献   

15.
16.
For point cloud classification, deep learning based methods use operations like voxelization to generate regular 3D grids or render the 3D mesh into a collection of images from multiple angles. However, the conversion will introduce additional computing and storage consumption. Some methods directly consume the raw point cloud. But their network scale and computational complexity make it difficult for them to deploy in embedded environments. On the basis of intensive studies of these algorithms, a novel lightweight dual path way network is proposed in this paper. Without additional conversion, our network attains a comparable performance but has 0.8 million floating parameters only. With point-wise and neighbor-wise representations, our approach incorporates global and local features of the point cloud. Experimental results on ModelNet40 and MNIST data-set demonstrate that our method achieves a good accuracy, and prove the effectiveness of our design.  相似文献   

17.
基于神经网络PLS方法的软测量建模研究   总被引:5,自引:1,他引:5  
通过神经网络(neurals network, NN)逼近策略,由偏最小二乘回归(partial least squares, PLS)方法拓展得到非线性的PLS-NN方法,构造了基于梯度下降算法的神经网络权值矩阵学习规则.以具有3个质量变量、26个过程变量的轧钢加热炉中钢坯温度分布的检测为例,利用两组实际的运行操作数据对所建模型进行了求解和验证.与线性PLS及机理模型的计算结果相比,PLS-NN模型的估计误差最小(比例大约为1∶1.7∶2.8).运用PLS-NN模型进行了轧钢加热炉生产操作条件的模型预测分析,分析结果表明,加热炉各燃烧段的燃气流量的变化对加热炉生产影响最为显著.  相似文献   

18.
针对深度卷积神经网络存在规则化参数多、未利用浅层先验知识、参数随机初始化后易导致权值更新梯度弥散及训练早熟等问题,采用PCA非监督学习方式获取导向性初始化参数数值方法,并基于对网络误差的传播分析,提出指数自适应弹性动量参数学习方法.以复杂场景下行人目标为例进行目标检测试验,实验表明:与人工特征检测识别方案及传统深度卷积模型相比,该模型可有效提升目标检测精度,检测速度提升20%以上;与其他动量同源更新机制相比,该算法收敛速度更快,收敛曲线更平滑,泛化能力强,可在不同深度模型均可取得较好检测效果,准确率分别平均提高1.6%,1.8%和6.19%.  相似文献   

19.
深度神经网络模型通常存在大量的权重参数,为了减少其对存储空间的占用,提出权重量化的深度神经网络模型压缩算法。在前向传播过程中,使用一个四值滤波器将全精度权重量化为2、1、-1和-2四种状态,以进行高效的权重编码。最小化全精度权重与缩放后四值权重的L2距离,以获得精确的四值权重模型。使用一个32位二进制数对16个四值权重进行编码压缩,以大幅度压缩模型。在MNIST、CIFAR-10和CIFAR-100数据集上的实验表明,该算法分别获得了6.74%、6.88%和6.62%的模型压缩率,与三值权重网络的相同,但准确率分别提升了0.06%、0.82%和1.51%。结果表明,该算法可提供高效、精确的深度神经网络模型压缩。  相似文献   

20.
针对目前图像编码的研究工作更加重视信息无损性,而没有体现出社交网络图像区分度的问题,本研究提出一种新颖的基于深度卷积神经网络的社交网络图像自编码算法,将深度卷积神经网络提取特征的能力与社交网络中图像的特点相结合,得到性能良好的图像自编码。结合社交网络图片的特性与聚类算法,先将图片进行聚类得到距离信息,再利用深度卷积神经网络学习图片的距离信息,提取深度卷积神经网络中的全连接层作为编码,重复以上步骤,并得到最终的图像编码。试验结果表明,本研究提出的算法在图像搜索中的效果好于其他算法,更利于在社交网络图像搜索中使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号