首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
采用基于滑移网格模型的三维非定常数值模拟方法,对NREL Phase Ⅵ风力机在轴流工况下的气动性能进行计算,并与参考文献提供的实验值进行比较,验证了方法的可靠性。然后对该风力机在偏航工况下的尾迹结构和气动性能进行计算,结果表明:偏航工况时,风力机尾迹呈现明显的偏斜特性,且尾迹区的速度恢复比轴流工况慢;旋转周期内,叶片根部和中部受偏航入流的影响较大,导致叶片表面压力变化较大且吸力面流动分离严重,而叶尖区域受偏航的影响较小。计算结果能够为研究风力机的动态失速以及风场中风机群的优化布置等问题提供指导。  相似文献   

2.
非设计工况下叶片前缘气膜冷却作用的数值分析   总被引:1,自引:0,他引:1  
基于冷气喷射模型的验证结果,对冲角分别为0°、15°和-15°三种条件下的叶片前缘3排孔气膜冷却特性进行了三维环形叶栅数值模拟。在吹风比等于1.0时,详细分析了叶片型面静压和气膜冷却效率的分布特征。分析结果表明,冲角的变化使叶片前缘滞止线位置发生偏移,且对叶片前缘静压差产生了很大的影响。相对冲角0°时的情况,当冲角为15°时,叶片吸力面冷却效果增强,压力面冷却效率值降低;当冲角为-15°时,吸力面侧冷却效果减弱,压力面侧冷却效率值升高。  相似文献   

3.
风力机叶片吸力面出现流体分离现象会导致风力机功率输出减小。为提高风力机效率,研究翼型在六种不同缝宽、五种攻角、2°射流角条件下的气体流场。获取叶片开缝前后叶片流场、压强系数曲线并对其进行分析。结果表明:开缝后附面层发展得到控制和延缓,流场稳定性提高;在缝宽为0.01倍弦长时,其升力系数最高可达1.4127,相比原型叶片提高14.83%;缝宽在0.01~0.03倍弦长之间,增升效果最优。射流技术应用于风力机翼型,有利于改善叶片流场状况,起到增升作用。  相似文献   

4.
在分析传统垂直轴风力机低效率原因的基础上阐述导流型垂直轴风力机的结构优势,并提出一种带组合式叶片的导流型垂直轴风力机,同时数值研究该垂直轴风力机的气动特性.这种垂直轴风力机由导风轮与风轮构成,其中导流叶片分别由进口径向段、出口导流段,以及与两者相切的中间圆弧段等三段组合而成,风叶是由进口圆弧段及与之相切的出口直线段组合而成.导流叶片不仅可以有效地降低因来流对风叶吸力面的直接冲击而造成的阻力转矩,而且还有助于增强来流对风叶压力面的有效冲击.这两方面均有助于使该种风力机风轮的旋转转矩得到显著增加.研究结果表明:这种带有组合式叶片导流型垂直轴风力机,具有工作范围宽、最佳尖速比大、风能利用率高等特点,其气动性能在数值上已明显超过常规垂直轴风力机的一般水平.在此基础上,将机翼型叶片引入导流型垂直轴风力机中,并数值论证了即使在这种变攻角、剧烈分离的垂直轴风力机的内部流场中,机翼型叶片对整个风力机性能的提高也能起到一定的作用.这种带有组合式叶片的导流型垂直轴风力机不仅具有较好的气动性能,而且具有简单的二维外形结构便于加工,具有推广使用的潜力.  相似文献   

5.
采用雷诺时均方法的定常数值计算,分析了三种侧面形状(圆弧、三角形和长方形)吸力面翼刀对高速扩压平面叶栅性能及流动分离的影响。翼刀位于吸力面上25%叶高、33.3%~100%叶片弦长处,将翼刀的尖角以及根部进行倒圆处理以减少附加损失,在-3°,0°和3°三个攻角下研究流动控制效果。结果表明:三种方案均能在-3°和0°攻角下有效提升叶片后部负荷,降低角区分离的尺寸,缩小35%~50%叶高区域的叶型损失。吸力面翼刀上表面诱导翼刀涡削弱附面层,下表面能阻断二次流的展向迁移,但在20%~30%叶高范围内产生附加损失。本文最佳翼刀方案为长方形,在-3°和0°攻角下能使能量损失系数降低0.7%,气流角分别提升0.3%和0.4%。  相似文献   

6.
粗糙度对风力机专用翼型气动性能影响   总被引:1,自引:0,他引:1  
针对风力机专用翼型FFA-W3-211进行数值模拟,深入系统探讨了粗糙度对该翼型气动性能的影响。采用剪切应力输运k-omega湍流模型进行CFD计算;于翼型表面均匀分布不同粗糙度,求出该翼型敏感粗糙度;同时,研究了在该翼型吸力面和压力面不同位置布置敏感粗糙度时,粗糙带位置对翼型升力系数和阻力系数的影响,分别求出吸力面和压力面的敏感粗糙带位置,与软件XFOIL算出转捩点位置进行对比,分析粗糙度对该翼型气动性能的影响。计算结果对风力机专用翼型的设计与开发具有一定的理论价值。  相似文献   

7.
利用profili软件和solid works建立2.5 MW风力机风轮三维模型,并将三维模型导入CFX中进行模型的流固耦合下流场风轮和叶片变形分析,得到流场域风轮表面压力和叶片表面压力载荷变化的有限元分析结果。结果表明:风轮表面压力迎风面大于背风面,形成压力差使得风轮旋转,背风面压力最大值出现在叶片上边缘区域。额定风速下叶片表面压力非线性分布,中间区域压力值最大,靠近叶片前缘区叶片震荡越大。额定风速和转速下叶片表面压力出现类似线性分布,叶尖到叶根呈现梯度分布状态,最大压力出现在叶尖部位。  相似文献   

8.
针对Mecanum轮式全方位移动平台存在的局限性,提出全方位移动履带,并研制一种履带式全方位移动平台;由于全方位移动履带上具有45°偏置的自由滚轮,所以定义平台纵向与坡面纵向构成的角度为偏航角,分析平台任意偏航角下的坡面静力稳定性,并指出45°、135°,225°以及315°是平台的奇异偏航角;利用平台在约32°的水泥坡面进行稳定性试验,分别测试平台在0°、15°、30°、45°以及90°偏航角下的稳定性;试验结果表明平台在45°偏航角下出现下滑,而在其他偏航角均为出现下滑。因此,履带式全方位移动平台具有与传统履带车辆相同的坡面静力稳定性,除在奇异偏航角下之外。  相似文献   

9.
为提高风力机叶片气动结构性能,基于风力机风轮空气动力学及叶片结构动力学原理,选取叶片所处位置及扭转变形为自由度,在研究叶片摆振、摆振方向各阶振动模态的基础上,提出风力机叶片气动弹性耦合振动变形计算模型。基于风力机整机部件构成及输出功率特征,提出风力机叶片优化设计模型,对某5 MW风力机叶片的进行形状优化设计,通过对比分析优化叶片和原始叶片的输出功率及气弹载荷特性,验证优化叶片气动及结构性能的优越性。  相似文献   

10.
涡轮叶片非对称扇形气膜孔冷却特性数值研究   总被引:2,自引:0,他引:2  
针对涡轮导向叶片吸力面和压力面上特定位置上的单排气膜孔,在吹风比为0.44~2.67范围内,数值研究非对称扇形气膜孔的冷却特性。基准对称扇形孔侧向扩展角为20°,后向扩展角为10°。研究结果表明,在扇形总扩展角相等的条件下,非对称型扇形气膜孔的气膜出流穿透能力与对称型扇形气膜孔基本相当,但气膜出流侧向覆盖范围较对称型扇形气膜孔有一定程度的改善,在高吹风比下扇形气膜孔侧向扩展角的影响较为显著。相对而言,非对称扇形气膜孔改善气膜冷却的效果在涡轮叶片压力面侧能得到更好的体现。  相似文献   

11.
基于扰流技术的直叶片升力型垂直轴风轮的性能改善   总被引:1,自引:1,他引:1  
提出采用扰流方法,来解决因局部方位角的叶片攻角极小而导致整体H型风轮性能较低的问题。基于双盘面多流管模型,分析了尖速比分别为5和6时,扰流对叶片攻角、切向力系数和转矩的影响规律。计算表明:扰流作用下,在0o≤θ≤15o和345oθ≤360o引流范围内,攻角增幅随着方位角的增加而增加;在175o≤θ≤185o范围内,随方位角的增加而减小;相同引流域内,随着尖速比的增大而减小。扰流对0o方位角性能改善效果比180o方位角明显,切向力系数和转矩的增幅在0o≤θ≤15o扰流范围内较大,345oθ≤360o次之,175o≤θ≤185o范围内增幅最小。研究了扰流角对风轮性能的影响规律,研究表明适当增大0o和180o处的扰流角可以提高风轮性能,扰流角增加相同幅度,上盘面的转矩的提高幅度更大。  相似文献   

12.
分析叶片在非设计点的气动性能和功率控制方式,研究叶片在实际运行风速范围内的风能利用系数,建立不同优化模型,设定实度最小或能量输出最大为优化目标,运用数学规划和遗传优化算法,对叶片气动参数进行优化设计,得到了1.2MW风机叶片整体优化的设计结果。经对比和仿真计算,可知整体优化后,叶片气动性能得到改善。  相似文献   

13.
The objective of this investigation is to clearly understand the aerodynamic characteristics of a small-sized wind turbine of NREL Phase VI, operating with a stall-regulated method using CFD code. Based on this, it is possible to provide turbine designers with the aerodynamic design data to increase efficiency and improve performance in the design phase of future small-sized wind turbine blades. Moreover, a comparison was made between experimental datasets, in order to verify the reliability and validity of the analysis results. The first height in the normal direction from the surface of a rotor blade is about 0.2 mm, and the average value of y+ is about 7 at 7 m/s. The domain is chosen to consist of only two hexahedral mesh regions, namely the interior region, including the wind turbine blade, and the external region excluding the rectangle. The total cell number of the numerical grid is about Ng = 3.0 × 106. Five different inflow velocities, in the range Vin = 7.0−25.1 m/s, are used for the rotor blade calculations. The calculated power coefficient is about 0.35 at a TSR of 5.41, corresponding to 7 m/s, and showed considerably good agreement with the experimental measurements, to within 0.08%. It was observed that the 3-D stall begins to generate near the blade root at a wind speed of 7 m/s. Therefore, root design approaches considering the appropriate selection of the angle of attack and the thickness are very important in order to generate the stall on the blade root. Through a clear understanding of aerodynamic characteristics of a small-sized NREL Phase VI wind turbine, it is expected that this useful aerodynamic data will be made available to designers as guidance in designing stall-regulated wind turbine blades in the development phase of small-sized wind turbine systems in the future.  相似文献   

14.
Design optimization of the wind turbine of a NREL 1.5-MW HAWT blade was studied to minimize the fluctuation of the bending moment of the blade in turbulent wind. In order to analyze the unsteady aerodynamic load of a wind turbine, FAST code was used as the analysis code. To consider turbulent wind as the wind input model in FAST, TurbSim was used as a turbulent wind simulator. For effective geometrical representation of the aerodynamic shape of a wind turbine blade, the shape modeling function was used to represent the chord length and twist angle. The fluctuation of the out-of-plane bending moment at the blade root was minimized by maintaining the required power of the wind turbine. Through the redistribution of the section force in the radial direction between both the primary and tip regions, the magnitude of the fluctuation of the out-of-plane bending moment was reduced by about 20%, and the rated power of 1.5-MW was maintained. The local angles of attack for the optimized blade were near the point of the maximum lift-to-drag ratio in the primary and tip regions compared to the baseline blade. The fluctuating unsteady aerodynamic load in the optimized blade was reduced within the operating range of the wind speed. With the optimized blade shape, the wind turbine can be operated with decreased fluctuating aerodynamic loads and have a longer life in turbulent wind.  相似文献   

15.
为了提高风力机的气动性能,基于NREL Phase Ⅵ水平轴风力机叶片,设计出的一种双层翼叶片。通过计算流体力学的方法,在不同来流风速下,对比分析了双层翼叶片与按比例缩放各叶高处弦长的NREL Phase Ⅵ水平轴风力机叶片的扭矩与弯矩,研究了叶片实度的影响,发现实度增加并不是双层翼叶片的气动性能优于原始NREL Phase Ⅵ风力机叶片的主要原因。对不同弦长比、垂直距离及水平距离的大小叶片所组成的双层翼结构进行数值模拟研究,利用流线图着重分析了大小叶片水平距离对风力机气动性能的影响,总结了气动性能随双层翼叶片几何参数的变化规律,发现在15 m/s至25 m/s的风速下,选择较大弦长比、较大垂直距离或者较小水平距离的双层翼叶片可得到较高的扭矩值,但弯矩值也会随之增加。  相似文献   

16.
《流体机械》2013,(11):20-25
根据油涡轮各部件的基本结构与工作原理,推导出油涡轮中能量转换与几何参数之间的关系方程,分析了油涡轮有效轴功率随叶片出口安放角β2的变化规律。本文结合1000MW汽轮机组配套油涡轮研发,借助CFD软件对叶片出口安放角β2分别为22.5°,18°,13.5°和10°4种设计方案的油涡轮进行多工况数值模拟。理论分析和多工况数值模拟都表明:在一定范围内随着叶片出口安放角减小,油涡轮的有效轴功率会随之增大,且"n-N T"曲线更平坦,不仅能够满足油涡轮的调节特性要求,而且还具有较好的稳定性。由此证明文中分析方法可以为完善油涡轮的设计理论奠定一些基础。  相似文献   

17.
通过建立气弹耦合分析模型,研究叶片、塔架等构件的耦合振动对叶根气弹载荷的影响以及在静、动态气动模型下的叶根和塔底气弹载荷的差异。采用"超级单元"模型,将叶片、塔架和主轴离散为通过转动铰和弹簧、阻尼器连接的刚体系统,以反映这类构件较大的弹性变形和非线性振动。在叶素动量理论(Blade element momentum,BEM)基础上,引入Beddoes-Lesihman动态失速模型,以反映气动载荷的动态特性。应用计算多体动力学理论和风力机气动模型,建立受约束的风力机系统气弹耦合方程。算例以某5 MW风力机为研究对象,通过施加不同的约束条件,研究风轮以外其他构件振动对叶根气弹载荷的影响;通过静、动态气动分析模型,考察叶根和塔底气弹载荷的动态耦合效应。分析表明,塔架、主轴等构件的运动会显著影响叶根的气弹载荷;叶片的动态失速特性也对叶根的气弹载荷和疲劳载荷谱有较明显的影响。研究工作对于保证风力机安全稳定运行和疲劳寿命设计有重要的作用。  相似文献   

18.
稳态偏航状态的风力机风轮气动力研究   总被引:2,自引:0,他引:2  
根据水平轴风力机的特征参数建立了偏航致动盘的涡流柱面模型,用稳态偏航状态下的叶素动量理论计算出周向诱导流动因数。以Pitt-Peters模型为收敛条件,考虑了风轮的偏航角参数,建立计算水平轴风力机轴向诱导流动因数的计算模型,并用C++语言在VC环境下进行仿真计算,解决了气动设计和性能计算的关键问题,并通过实例验证了仿真过程的可行性。  相似文献   

19.
The rotor blade is an important device that converts kinetic energy of wind into mechanical energy. It affects power performance, efficiency of energy conversion, load and dynamic stability of a wind power generation system. This paper presents an aerodynamic design of 3 MW class blade using BEM and confirms that the design satisfies the initial design target by BEM and CFD analysis. To investigate the effects of radial flow at the inboard region, the result of static BEM analysis was compared with the result of CFD analysis. The result of quantitative comparison among thrust force, power coefficient and mechanical power depending on wind speed change is presented. Furthermore, design reference data such as pressure, streamline, torque and thrust force distribution on the blade surface is presented as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号