首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
集中供热的负荷预测是在掌握负荷变化规律的基础上,充分考虑各种影响因素之后,以一定的精确度预测未来某一时刻的负荷,提高集中供热管网系统的运行效率、可靠性和经济性.建立了基于Elman型神经网络的集中供热负荷预测模型,用Matlab仿真验证Elman神经网络具有学习效率高、逼近速度快、泛化能力强等优点,实例预测证明了Elm...  相似文献   

2.
浊度作为反映供水管网水质变化的重要指标,建立水质模型对浊度进行预测有利于指导水质控制措施的实施.为了适应浊度监测数据的动态性,选用Elman神经网络构建浊度预测模型.对数据进行缺失值处理、异常值识别与处理、标准化和重采样后,构建浊度单指标、浊度-余氯多指标和浊度-压力多指标Elman神经网络对供水管网浊度进行预测和评价...  相似文献   

3.
建立了排水管网液位的Elman神经网络预测模型,以液位和雨量的监测数据为输入,未来的液位值为输出。提前5、15、45和60 min的预测平均绝对误差分别为2.07%、3.75%、8.39%和9.49%。与BP神经网络对比,Elman神经网络的拟合和预测效果分别提升约23%和21%。结果表明,基于Elman神经网络的管网预测模型具有良好的预测效果,可以为建立排水管网的在线预测预警系统提供有效的方法支持。  相似文献   

4.
简要介绍了BP网络与Elman网络,建立了燃气负荷模型,并利用Matlab软件采用两种神经网络分别对燃气小时负荷进行预测,仿真结果表明在采样点较少,不考虑外部干扰时,在精度上Elman网络明显优于BP网络。  相似文献   

5.
为了准确预测城市时用水量,将灰色理论与Elman神经网络模型结合,建立城市时用水量预测模型。灰色系统能较好地预测变化的趋势,而Elman神经网络具有动态特性好、逼近速度快、精度高等特点,对于城市时用水量的预测,两者结合能够发挥各自的优势。将模型应用于西北某市,结果表明,灰色Elman神经网络模型优于传统灰色预测模型,提高了预测精度,达到了很好的预测效果。  相似文献   

6.
建筑能耗影响因素复杂,研究新的能耗预测方法可简化预测过程,提高预测精度。首先对一栋高校建筑的能耗样本进行主成分分析(PCA),去除信息冗余,消除输入变量之间的相关性。把经过PCA提取的主成分作为Elman神经网络的输入,隐含层和输入层均采用tansig函数,在训练过程中不断对权值和偏差进行修正,最终建立基于PCA-Elman的建筑能耗预测模型。采用测试样本对模型精度进行验证,实例表明,基于PCA-Elman的建筑能耗预测模型相对误差为5.49%,优于单一Elman神经网络预测结果。本方法简单易行,可用于建筑能耗预测和建筑能耗监测系统的报警阈值设置。  相似文献   

7.
以北京某建筑的空调系统作为实例研究对象,在所采集的3年实测数据基础上,主要探讨了基于ELMAN神经网络的日冷负荷预测方法和误差。用多元线性回归方法分析了日冷负荷神经网络预测模型输入参数对输出结果的影响度。最后经实验验证,以3周以上历史数据为训练集经多次预测后取平均值,具备较高的预测精度,同样可以指导工程实际设计。  相似文献   

8.
利用Matlab软件建立Elman神经网络的热值预测模型。该模型在学习中确定了玉米秸秆的热值与其纤维素、半纤维素和木质素质量分数之间的非线性关系。模型利用玉米秸秆中纤维素、半纤维素和木质素的质量分数作为输入,预测出玉米秸秆的热值。以秸秆的热值为因变量,秸秆的纤维素、半纤维素和木质素的质量分数为自变量,用训练组的数据建立线性回归模型。对线性回归模型与Elman神经网络模型的预测结果进行对比。线性回归模型预测值与实际值之间存在较大相对误差,而Elman神经网络模型预测值与实际热值的相对误差较小,最大相对误差为3. 5%,并且平均相对误差小于2%,线性回归模型预测效果远不如Elman神经网络模型预测效果。  相似文献   

9.
《门窗》2016,(5)
为了克服传统BP神经网络预测精度差,易陷入局部极值的缺陷,提出了模糊神经网络系统。利用模糊粗糙集通过历史负荷数据信息的模糊化替代负荷变化的离散化,快速寻找出样本数据间的连续属性的信息,将其与传统BP神经网络结合组成模糊神经网络对热负荷进行预测。实验结果表明:该模糊神经网络预测结果的相对误差很小不超过2%,在短期负荷预测方面具有的优越性。  相似文献   

10.
11.
基于小波变换的神经网络空调负荷预测研究   总被引:4,自引:1,他引:4  
基于小波变换的思想建立了递归BP网络模型来预测空调负荷,改进了网络权值、闽值的修改算法,引入了折扣系数法以提高近期预测精度,结合一实例进行了空调逐时冷负荷预测,结果表明该方法预测精度高,适用于空调负荷预测。  相似文献   

12.
燃气负荷预测能够为管网调度运行工作提供指导,进而提高管网运行的安全性和天然气供应的可靠性,是燃气企业实现科学调度和精细管理的重要手段。但由于燃气负荷受到气温、节假日、经济等多因素的影响,仅通过建立线性关系式难以达到预测所需的精度,需要借助智能算法搭建负荷预测模型。本文基于遗传算法优化人工神经网络搭建燃气负荷预测模型,通过遗传算法确定了人工神经网络的结构、优化了初始权值和阈值,并收集了实际用户的燃气负荷作为样本用于训练模型和测试精度,结果表示该模型能够较好的满足燃气负荷预测需求。  相似文献   

13.
与传统的Elman神经网络相比,采用具有输出一输入反馈机制的改进Elman(即OIF-Elman)神经网络对燃气日负荷进行预测,不仅计入了隐层节点的反馈,而且考虑输出层节点的反馈,以便从有限的训练样本中获得更多的信息.预测结果表明,在样本较少时,无论在训练速度上,还是在预测准确度上,OIF-Elman网络明显优于Elman网络.  相似文献   

14.
豆连旺  冯良 《煤气与热力》2005,25(12):10-14
采用VC语言编写基于神经网络技术的城市燃气短期负荷预测模型,经实例验证可以较精确地预测出城市燃气短期负荷.预测模型在权值修正项中引入动量项以加速收敛,在数据输入时引入噪声,以提高网络的泛化推广能力.  相似文献   

15.
通过灰色关联分析法对区域供热负荷影响因素进行了评价,并将灰色预测与BP神经网络算法相结合,建立了灰色神经网络结构,能够对影响供热负荷的因素进行筛选,并对供热负荷进行预测。对某区域供热负荷进行了供热负荷预测与验证,通过对比筛选不同影响因素灰色神经网络的预测结果与误差,表明灰色神经网络模型在热负荷预测中能够选择合适的影响因素,排除关联度低的影响因素,可提高供热负荷预测的准确性,为区域供热负荷的预测提供理论依据。  相似文献   

16.
基于互联网的神经网络空调负荷预测解决方案   总被引:2,自引:1,他引:2  
在分析比较各种负荷预测方法的基础上,给出了一个基于互联网的应用神经网络方法进行负荷预测的方案。该方法通过互联网以“准在线”的方式可同时满足较高的逐时负荷预测精度和模型调整的要求,并已在实际工程中使用,取得了一定的效果。  相似文献   

17.
为研究型钢再生混凝土结构的粘结破坏规律及利用Elman神经网络算法预测其粘结强度的方法,选取再生混凝土取代率、再生混凝土强度、再生混凝土埋置长度、型钢保护层厚度、箍筋直径及箍筋间距作为影响因素,设计并制作了36个型钢再生混凝土推出试件.通过推出试验获得了型钢再生混凝土结构的粘结破坏规律并定义了3个平均特征粘结强度.其次...  相似文献   

18.
基于BP神经网络城市燃气短期负荷预测   总被引:1,自引:1,他引:1  
论述了BP神经网络的预测模型结构,提出了基于该模型的城市燃气短期负荷预测方法和程序流程,结合某城市燃气负荷数据进行了燃气负荷模拟预测,预测结果和实际情况有很好的一致性。  相似文献   

19.
为了解决BP神经网络在预测空调负荷时存在的学习速度慢、维数灾难、容易陷入局部收敛及无法保证全局收敛最优解等问题,首先采用Spearman秩相关系数分析冷负荷的主要影响因素,确定了动态冷负荷预测模型的输入参数,然后构建复合遗传算法的改进型GA-BP神经网络预测模型,并分别利用BP和GA-BP神经网络模型对位于上海的某大型...  相似文献   

20.
空调负荷预测对于优化空调系统运行具有重要指导价值,本文针对传统神经网络在预测空调负荷时精度较低、泛化能力弱和物理意义不明晰的缺点,建立了模糊C均值算法(Fuzzy C-means)优化的BP神经网络复合模型。模型先采用FCM算法对输入参数进行聚类,针对不同类建立BP神经网络预测模型,将待测样本分类后进行预测,最后使用决策树算法筛选预测结果中聚类不佳的部分进行加权优化。以珠海某办公楼空调系统实际运行数据为例验证了模型,结果显示随机负荷样本预测的精度指标即标准差率(Coefficient of Variance)为0.191相较于不聚类神经网络提高了51.4%;典型工作日、休息日日均负荷样本预测标准差率为0.08和0.14相对于不聚类神经网络则分别提高了73.0%和39.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号