首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
燃气涡轮动叶叶顶结构对跨叶顶的间隙泄漏和叶顶传热性能有着重要影响。采用实验和数值模拟方法对比研究了平顶、凹槽和拓扑优化3种不同叶顶结构的涡轮叶栅气动和叶顶传热性能。实验中,采用旋转的大转盘模拟机匣平移运动。实验结果表明:在大转盘旋转条件下,相比于平顶叶栅,凹槽叶顶实验得到的平均换热系数降低了19.07%,拓扑优化叶顶下降了1.53%。数值模拟结果显示,从叶顶压力面至吸力面“上凸-下凹-上凸”的拓扑优化结构有效地减小了超音速区域,凹槽叶顶在凹槽内的流体均以亚音速流动,相比于平顶叶栅,凹槽叶顶和拓扑优化叶顶叶栅出口质量平均总压损失系数分别减少5.38%和5.44%。  相似文献   

2.
通过数值方法对某二级带冠涡轮的流场进行研究,分析了齿顶间隙对涡轮气动性能的影响。研究结果表明:泄漏流与主流掺混后形成一个涡流区,改变了叶栅上半通道的流场结构;随着齿顶间隙的增加,涡轮的流量先快速增加后趋于平缓,涡轮的效率先快速减小后趋于平缓;同时发现不同工况下,涡轮的流量和效率的变化趋势相同。  相似文献   

3.
以NACA 65-1810压气机为研究对象,探讨了叶顶间隙对压气机流动特性的影响。在ICEM中建立结构化网格,针对不同叶顶间隙方案采用SST k-ε双方程湍流模型,对压气机流场进行了数值模拟,分析了叶顶间隙对压气机平面叶栅气动性能、泄漏涡流及平面叶栅性能的影响。结果显示,紧密间隙时会出现逆流现象;减小叶顶间隙不仅可以较好地抑制泄漏涡流,而且能够减小压力损失,从而提高平面叶栅的效率,改善压气机平面叶栅的性能。  相似文献   

4.
为揭示叶顶凹槽对轴流压气机气动性能的影响和机理,本文对一试验台转子进行了全工况数值模拟,计算性能与试验结果取得很好的一致性。在此数值模型基础上对叶顶凹槽及其改进结构—叶顶篦齿进行了数值研究,研究分析表明:叶顶凹槽降低了泄漏流流量,但转子效率和失速裕度均有所下降,主要因为叶顶泄漏流在逆压梯度的作用下沿槽内向叶顶前缘方向流动,使前缘附近泄漏流反流程度增大,造成二次流损失及通道堵塞程度增大;凹槽深度是影响转子气动性能的主要因素。将叶顶凹槽分割开形成叶顶篦齿结构,在效率下降很小的情况下提高了转子的失速裕度;通过调整篦齿位置可进一步提高转子的气动性能;叶顶篦齿的应用存在特定的叶顶间隙范围。  相似文献   

5.
通常生成复杂外形物体的单域贴体网格很困难,为了克服这点,采用嵌套网格生成技术.以三段翼型为例,首先对某三段翼型分别生成贴体计算网格,再采用嵌套网格技术,生成嵌套网格,最后采用N-S方程对该翼型的粘性绕流进行数值模拟.计算结果验证了嵌套网格方法能较好地模拟多段翼型上的粘性绕流、多缝道流动及最大升力.  相似文献   

6.
采用数值仿真和实验结合的方法研究了半开式轴流风机叶顶压力面非均匀倒圆结构对叶顶泄漏流动的控制机理,以及对气动和噪声性能的影响。研究结果表明,叶顶压力面侧非均匀倒圆结构能够减弱叶顶的分离涡和二次涡,降低叶顶载荷,改变叶顶泄漏涡在吸力面的分离点,削弱叶顶泄漏涡强度,实现同风量噪声下降0.8dB(A),而对风量和功率的影响可忽略。  相似文献   

7.
以汉诺威大学某型四级轴流涡轮为研究对象,通过CFD数值模拟,验证了数值计算在轴流涡轮机气动性能计算上的实用性,分析了涡轮效率、膨胀比等数据,并得到不同涡轮级动叶叶顶间隙下动叶出口熵增,气流角的变化以及流场结构模型。  相似文献   

8.
为降低叶顶泄漏损失,本文首次将NACA翼型引入向心涡轮,并采用正交试验设计和计算流体动力学(CFD)方法获得了具有最优NACA叶顶型线的向心涡轮叶片,并揭示了该叶片对叶顶泄漏损失的控制机理。结果表明,最优NACA叶顶型线具有较大的前缘内接圆半径、较小的尾缘厚度,以及更靠近前缘的最大厚度位置。其内接圆半径和最大厚度位置对向心涡轮等熵效率的影响度也随叶顶间隙增加而增大。当叶顶间隙为8%出口叶高时,最优NACA叶顶型线可使向心涡轮等熵效率提高1.47%,并使向心涡轮能够在非设计工况下具有较高效率。该型线能够降低尾缘附近的叶顶泄漏速度,减弱泄漏流与主流掺混强度,使流动损失降低。  相似文献   

9.
采用NUMECA商业软件对某两级涡轮叶型超差前后的叶栅进行了数值计算,分析对比了叶型超差前后的涡轮叶栅的气动特性,为涡轮叶片的设计及加工制造提供有意义的技术参考。  相似文献   

10.
轴流压气机叶顶喷气扩稳机理试验研究   总被引:1,自引:0,他引:1  
轴流压气机叶顶喷气已经被证实能够有效拓宽压气机的失稳裕度。在一台低速单转子轴流压气机上进行叶顶喷气试验研究,采用喷气动量比作为衡量失速裕度改善的指标,并通过改变叶顶间隙和喷气角度对不同喷气量的扩稳效果进行分析,试验中发现随着叶顶喷气动量比的增加,压气机失速裕度的变化会出现两个拐点,即存在两个喷气动量比分界点,并将喷气动量比分界点前后的三个阶段对应的喷气量分别定义为微喷气,大喷气和超大喷气。通过试验测量压气机进出口气动参数以及壁面动态压力信号对喷气动量比分界点前后叶顶喷气扩稳机理进行详细的分析。试验分析结果表明:微喷气扩稳仅仅是因其能够减弱叶顶间隙泄漏涡和叶顶间隙泄漏流非定常性;大喷气则能够同时减小进口气流攻角,推迟叶片吸力面分离和抑制叶顶间隙泄漏涡,推迟叶顶间隙泄漏流非定常性的产生;超大喷气虽能够推迟叶顶间隙泄漏流非定常性的产生,但喷气的影响区域已严重向叶片通道内部转移,甚至影响了压气机的做功能力。  相似文献   

11.
The effects of winglet offset distance, winglet coverage, and winglet cross section on the over-tip leakage loss for the plane tip have been investigated experimentally in a turbine blade cascade for a tip gap height-to-span ratio of h/s = 1.36 %. The results show that the over-tip leakage loss for the full coverage winglet increases steeply with increasing the winglet offset distance. This loss generation is attributed to flow disturbances over the forward-facing and backward-facing steps within the tip gap. The winglet flush mounted to the tip surface provides the best result. With the leading edge winglet portion or without it, the both-side winglet always provides better aerodynamic performance than the corresponding pressure-side winglet or suction-side winglet. Longer coverage of the both-side winglet leads to lower loss. Therefore, the full coverage winglet performs best in the loss reduction for the plane tip. In general, thinner winglet leads to better aerodynamic result, and the winglet cross section having a slant bottom surface with the smallest thickness at its outer end is recommended.  相似文献   

12.
排尘孔涡轮冷却叶片叶顶流动与传热研究   总被引:2,自引:0,他引:2  
涡轮叶片叶顶排尘孔用于清除冷气中掺杂的尘粒,以保证气膜孔和冲击孔的可靠工作,但排尘孔射流引起叶顶流动和传热问题。采用参数化方法建立有、无排尘孔涡轮冷却叶片几何模型,基于包含叶片主体、主燃气通道和三腔回流式内冷却通道的全局模型,采用流热耦合数值分析,开展排尘孔对涡轮冷却叶片叶顶流动与传热问题的初步研究。研究结果表明,对比有、无排尘孔叶片,排尘孔射流可降低叶顶平均温度约25 K;冷却通道对流换热作用和叶顶排尘孔射流可使叶顶平面降温400~600 K,冷却效果与冷却通道冷气流量和尘孔结构在叶顶位置相关;排尘孔叶顶射流对叶顶间隙高温燃气泄漏具有阻碍作用,可以提高叶片总压恢复系数约0.5%~1.5%,随着冷气流量的增大,这种作用增强;尘孔结构设计应兼顾射流对叶顶流动与传热的共同影响。  相似文献   

13.
叶尖小翼调控压气机叶栅间隙流场结构的试验研究*   总被引:1,自引:0,他引:1  
在低速条件下,对叶尖不同位置安装小翼的压气机叶栅流场进行试验研究。通过端壁静压孔对上端壁流场进行测量,叶栅出口流场利用五孔气动探针测量,细致分析不同安装方式叶尖小翼对压气机叶栅叶尖端区流场结构、气动损失和通流能力的影响。结果表明,不同安装方式的叶尖小翼对压气机叶栅间隙流场影响不同。与无叶尖小翼的常规叶栅相比,吸力面小翼使得叶栅损失降低的同时带来了流动堵塞的降低,压力面小翼使得叶栅损失和流动堵塞同时增加,组合小翼在降低叶栅损失的同时有效降低了叶栅的流动堵塞,改善了叶栅的通流能力。通过与常规叶栅叶尖区域流场结构的详细对比分析,对不同安装方式的叶尖小翼的影响机理做出解释。  相似文献   

14.
The tip gap flow and aerodynamic loss generation over a plane tip equipped with a “constant-width suction-side” (CWSS) winglet and a “varying-width suction-side” (VWSS) winglet have been investigated in a turbine cascade. For a fixed tip gap of h/c = 2.0%, three different winglet widths of w/p = 5.28, 10.55, and 15.83% are tested for the CWSS winglet. The VWSS winglet is designed based on flow visualization and has almost the same winglet area as the CWSS winglet of w/p = 15.83%. In general, the suction-side winglets have a role to increase aerodynamic loss in the tip leakage vortex region but reduce aerodynamic loss in the passage vortex region. For the CWSS winglet, the total-pressure loss coefficient mass-averaged all over the measurement plane has no appreciable changes with increasing w/p from 0.0 to 10.55%, but tends to decrease with further increment of w/p. The VWSS winglet performs better in reducing aerodynamic loss in the passage vortex region than the CWSS winglet of w/p = 15.83% but leads to a little bit higher aerodynamic loss in the tip leakage vortex region. The aerodynamic loss reduction by the VWSS winglet is 7.4% in comparison with the plane tip without winglet, and is about 60% lower than that by the widest CWSS winglet.  相似文献   

15.
A numerical analysis has been conducted in order to simulate the characteristics of complex flow through linear cascades of high performance turbine blade with/without tip clearance by using a pressure-correction based, generalized 3D incompressible Navier-Stokes CFD code. The development and generation of horseshoe vortex, passage vortex, leakage vortex, tip vortex within tip clearance, etc. are clearly identified through the present simulation which uses the RNG k-ε turbulent model with wall function method and a second-order linear upwind scheme for convective terms. The present simulation results are consistent with the generally known tendency that occurs in the blade passage and tip clearance. A 3D model for secondary and leakage flows through turbine cascades with/without tip clearance is also suggested from the present simulation results, including the effects of tip clearance height.  相似文献   

16.

The current study aims to understand the aero-thermal performance of a cooled cavity tip in a single stage transonic turbine. The squealer tip of the uncooled turbine blade was reduced to an aerodynamic loss with suppressing leakage flow. However, the aerodynamic loss study of the cooled turbine blade tip is rare. It is necessary to study the tip cavity of the cooled turbine blade. Depth, front blend radius and aft blend radius of the cavity were set as design variables, and 30 cases were chosen using design of experiments. These cases were calculated with conjugate heat transfer method. Approximation model was made using the Kriging method, and tip cavity shape was optimized with multidisciplinary design optimization. Average total pressure loss behind the trailing edge and cooling effectiveness of blade tip surface were set to the objective function. The aerodynamic optimization model decreased 1.6 % of total pressure loss, the heat transfer optimization model increased 1.3 % point of cooling effectiveness and aero-thermal optimization model were found. Volume of tip cavity becomes larger when three design variables are grown. Amount of tip leakage flow and its distribution over the tip region increases and total pressure loss and cooling effectiveness increase. In terms of heat transfer, blade tip without cavity is advantageous. Total pressure loss coefficient, however, also increases over 5 %. To improve both aero-thermal characteristics of cooled blade tip, the design using the multidisciplinary design optimization is recommended.

  相似文献   

17.
为了提高风力机的气动性能,基于NREL Phase Ⅵ水平轴风力机叶片,设计出的一种双层翼叶片。通过计算流体力学的方法,在不同来流风速下,对比分析了双层翼叶片与按比例缩放各叶高处弦长的NREL Phase Ⅵ水平轴风力机叶片的扭矩与弯矩,研究了叶片实度的影响,发现实度增加并不是双层翼叶片的气动性能优于原始NREL Phase Ⅵ风力机叶片的主要原因。对不同弦长比、垂直距离及水平距离的大小叶片所组成的双层翼结构进行数值模拟研究,利用流线图着重分析了大小叶片水平距离对风力机气动性能的影响,总结了气动性能随双层翼叶片几何参数的变化规律,发现在15 m/s至25 m/s的风速下,选择较大弦长比、较大垂直距离或者较小水平距离的双层翼叶片可得到较高的扭矩值,但弯矩值也会随之增加。  相似文献   

18.
无堵塞泵叶轮三维贴体网格生成   总被引:4,自引:2,他引:4  
网格生成是数值模拟的关键技术之一,而无堵塞泵叶轮其叶片弯曲严重、包角大、型线特殊等特点,网格生成技术具有特殊性。采用求解泊松方程的方法实现无堵塞泵叶轮三维贴体网格的自动生成,其中通过源项控制来满足网格的正交性及疏密调整等要求。计算时根据边界处网格线正交的控制角和控制距离的几何约束确定边界条件,可使壁面函数法的条件得到满足,并能将第二类压力边界条件直接用于计算,减少数值误差。  相似文献   

19.
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery.It is important to identify the leakage loss characteristics in order to optimize turbomachinery.At present,little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine,despite of the widespread use of the honeycomb seals.Therefore,interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow.The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed.An additional study on the impact of subtle shroud cavity exit geometry is also presented.The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal.The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions.The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry,and it is helpful for the design optimization of turbomachinery.  相似文献   

20.
以透平叶片振动分析理论为基础,对实验室的等截面直叶片分别通过理论法和有限元法求解其前7阶的切向弯曲自振频率并加以比较。利用有限元法对叶片及顶部围带相互连接的叶片组在不同转速下进行模态分析,得到叶片及叶片组动力刚化效应振动模态数值分析结果,并对结果进行了分析比较。对于顶部围带不连接的叶片组,利用有限元法通过构造弹簧模型来处理顶部围带的接触问题,所得结果真实反映了汽轮机运行过程中围带的碰撞和叶片的振动情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号