首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ring-opening metathesis copolymerization of norbornene ethyl polyhedral oligomeric silsesquioxane monomer (NBEPOSS) and 2-endo-3-exo-5-norbornene-2,3-dicaboxylic acid trimethyl ester (NBETMS) was performed using a Ru-based catalyst, RuCl2(CHPh)(PCy3)2. The block copolymers poly(NBETMS-b-NBEPOSS) were then converted to poly(NBECOOH-b-NBEPOSS) by hydrolysis and precipitation. The polymers were characterized by NMR and GPC and the actual NBEPOSS contents were found in good correspondence with the theoretical values. A linear dependence of Mn on conversion and a linear dependence of ln([M0]/[M]) on reaction time observed in the polymerization of NBETMS suggest that chain breaking reactions such as termination and chain transfer are minimal. Low PDI values and smooth GPC peak shifts during polymerization after addition of a second batch of the same monomer or a NBEPOSS monomer also reflect a living process.  相似文献   

2.
Well-defined diblock copolymer based on polyhedral oligomeric silsesquioxane (POSS) was synthesized by atom transfer radical polymerization (ATRP) using POSS/PMMA-Cl as a macroinitiatior. POSS/PMMA-Cl was prepared by POSS-Cl initiating the polymerization of MMA in the presence of CuCl, 2, 2, - bipyridine at 110 °C. The structure of the block copolymer had been characterized by FTIR, 1H NMR and GPC, which all agreed well with the theoretical values. XRD measurements revealed that POSS molecules were successfully monodispered in the hybrid composite.  相似文献   

3.
In this study, a series of novel hybrid pH-sensitive block copolymers containing POSS (HBCPs), poly(methacrylisobutyl-POSS)-b-poly(4-vinylpyridine) (PMAiBuPOSS-b-P4VP) and poly(methacrylisobutyl-POSS)-b-polystyrene-b-poly(4-vinylpyridine) (PMAiBuPOSS-b-PS-b-P4VP), were synthesized via reversible addition fragmentation chain-transfer (RAFT) polymerization. Their structures and molecular weight were characterized via 1H NMR, GPC and TEM. Their self-assembly behaviors, including pH-sensitive behaviors and self-assembly morphologies in aqueous solution, were investigated via DLS and TEM. It was found that the size of aggregates in aqueous solution would initially decrease and later increase as the pH value increased. It is supposed that this behavior was caused by the pH sensitivity of the P4VP block of the HBCPs. Our hybrid triblock copolymers were found to assemble nanowires and nanospheres. Unique dot-like phase separation was also observed in the aggregates of the HBCPs at pH 1. Furthermore, we investigated the effects of block length and structure on the self-assembly morphologies of the HBCPs.  相似文献   

4.
Yuan-Jyh Lee  Chih-Feng Huang 《Polymer》2006,47(12):4378-4386
A new class of polybenzoxazine/POSS nanocomposites with network structure is prepared by reacting multifunctional benzoxazine POSS (MBZ-POSS) with benzoxazine monomers (Pa and Ba) at various compositional ratios. Octafunctional cubic silsesquioxane (MBZ-POSS) is used as a curing agent, which is synthesized from eight organic benzoxazine tethers through hydrosilylation of vinyl-terminated benzoxazine monomer (VP-a) with octakis(dimethylsiloxy)silsesquioxane () using a platinum complex catalyst (Pt-dvs). Incorporation of the silsesquioxane core into polybenzoxazine matrix could significantly hinder the mobility of polymer chains and enhance the thermal stability of these hybrid materials. For these nanocomposites, increasing the POSS content in the hybrids is expected to improve its thermal properties with respect to the neat polybenzoxazine. The morphology feature is useful to explain the thermal property changes (Tg and Td) and AFM images show that the presence of POSS aggregation in larger scales occurs at higher POSS contents. The reason of the heterogeneous phase separation may be from the less compatibility of the inorganic silsesquioxane core with organic benzoxazine species and the homopolymerization of MBZ-POSS. In the course of the formation of the polybenzoxazine/POSS hybrids, POSS particles were separated from the polybenzoxazine rich region, leading to POSS rich domains in the range of 50-1000 nm.  相似文献   

5.
Yi-Chen Wu 《Polymer》2010,51(17):3948-3955
We prepared a new class of polybenzoxazine-POSS nanocomposites with network structures through thermal curing of multifunctional benzoxazine groups of POSS (OBZ-POSS), which was synthesized from octa-azido functionalized POSS (OVBN3-POSS) with 3,4-dihydro-3-(prop-2-ynyl)-2H-benzoxazine (P-pa) via a click reaction. Incorporation of the silsesquioxane core into the polybenzoxazine matrix could significantly enhance the thermal stability of these hybrid materials. For these nanocomposites, the POSS nanoparticles in the hybrids were improved their thermal properties with 2,2-bis(3,4-dihydro-3-methyl-2H-1,3-benzoxazine)propane (BA-m) and P-pa polybenzoxazine, analyzed via TGA analyses. In addition, the incorporation of the POSS led to the formation of an inorganic protective layer on the nanocomposite’s surface. Contact angle data provided positive evidence to back up this hypothesis that the incorporation of the POSS units would decrease the surface energy property. In addition, the low glass transition temperature of poly(4-vinyl pyridine) and polycarbonate thin films, which lack liquid resistance, could possess low surface free energy after modification with OBZ-POSS due to low temperature curing of this new compound.  相似文献   

6.
The development and commercialization of nanoparticles such as nanoclays (NCs), carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) offers new possibilities to tailor adhesives at the nanoscale. Four types of POSS, with reactive mono-functional groups of isocyanatopropyl, glycidoxypropyl, aminoethyl and non-reactive octaphenyl, were incorporated in concentrations of 1, 3 and 5 wt% into a polyurethane (PU)-based adhesive. Thermo-mechanical bulk properties were studied using dynamic mechanical analysis (DMA). Adhesive properties were characterized in shear and peel modes. Atomic force microscopy (AFM) was used to study the nanoscale morphology. DMA measurements indicated that the neat PU possessed a glass transition temperature (T g) of ≈ 30°C. The T g of PU/POSS-glycidoxypropyl nanocomposite adhesive increased gradually with POSS concentration to 50°C for 5 wt%. PU/POSS-octaphenyl nanocomposite adhesive exhibited an increased T g by 10°C for 5 wt%. The incorporation of POSS-isocyanatopropyl in the PU had no effect on the T g. With respect to shear properties of POSS-octaphenyl-, POSS-isocyanatopropyl- and POSS-glycidoxypropyl-based PU nanocomposite adhesives, shear strength improved by 230, 178 and 137%, respectively, compared to neat PU. POSS-aminoethyl exhibited lower shear and peel strengths, while POSS-isocyanatopropyl provided the best balance of both higher shear and peel strengths compared to neat PU. It was concluded that the grafted functional group on the POSS and its reactivity with the PU network components were the decisive factors with respect to the thermo-mechanical, morphological and adhesive properties of the resulting nanocomposite adhesives. Consequently, the POSS/polyurethane based nanocomposite adhesives could be tailored for a large range of applications.  相似文献   

7.
Fc-CHCH-C6H6-(C5H9)7Si8O12 (POSS1, Fc: ferrocene) which contain both metal and CC double bond was firstly synthesized by Wittig reaction. The chemical structure of POSS1 was characterized by FTIR, 1H, 13C and 29Si NMR, mass spectrometry and elemental analysis, and the magnetic property of POSS1 have also been studied. Polystyrene composites containing inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS1) were prepared by bulk free radical polymerization. XRD and TEM studies indicate that POSS1 is completely dispersed at molecular level in PS matrix when 1 wt% POSS1 is introduced, while some POSS1-rich nanoparticals are present when content of POSS1 is beyond 3 wt%. GPC results show that molecular weight of the PS/POSS1 nanocomposites are increased with addition of POSS1. TGA and TMA data show the thermal stabilities of PS/POSS1 nanocomposites have been improved compared to neat PS. The PS/POSS1 nanocomposites also display higher glass transition temperatures (Tg) in comparison with neat PS. Viscoelastic properties of PS/POSS1 nanocomposites were investigated by DMTA. The results show the storage modulus (E′) values (temperature>Tg) and the loss factor peak values of the PS/POSS1 nanocomposites are higher than that of neat PS. Mechanical properties of the PS/POSS1 nanocomposites are improved compared to the neat PS.  相似文献   

8.
八乙烯基多面体低聚倍半硅氧烷的合成与表征   总被引:2,自引:0,他引:2  
采用水解缩合法,在浓HCl为催化剂的条件下,以乙烯基三甲氧基硅烷为原料合成了八乙烯基多面体低聚倍半硅氧烷,并对合成产物进行了表征;研究了反应温度、反应物的投料比对产物收率的影响.结果表明,在25 ℃,反应物水解缩合21 d,乙烯基三甲氧硅烷、HCl、CH3OH三者的体积比为9∶ 12∶ 200,乙烯基三甲氧基硅烷、HCl的体积分数分别为3.90%、5.43%时,产物的收率达到最高,为26.3%.  相似文献   

9.
POSS基聚合物的热性能和阻燃性   总被引:1,自引:0,他引:1  
本文介绍了POSS单体和POSS基聚合物的结构、性能和制备方法。重点阐述了各类POSS基聚合物以及它们的热性能。同时简单介绍了POSS对聚合物阻燃性的影响,分析了POSS提高聚合物热性能和阻燃性的原因,并展望了POSS基聚合物的发展方向。  相似文献   

10.
Benzoxazine was synthesized through the Mannich condensation of phenol, formaldehyde, and primary amines through ring-opening polymerization. Polybenzoxazines are phenolic-like materials that possess dimensional and thermal stability, and they release no toxic byproducts during their polymerization. To further improve the thermal stability of polybenzoxazines, a hydrosilane-functionalized polyhedral oligomeric silsesquioxane (H-POSS) was incorporated into the vinyl-terminated benzoxazine monomer (VB-a) which we then subjected to ring-opening polymerization. In addition, we also prepared hybrids from a non-reactive POSS (IB-POSS) and VB-a. The glass transition temperature (Tg) of a regular polymerized VB-a (i.e. PVB-a) is 307 °C, while the hybrid containing 5 wt% of H-POSS is 333 °C. The IB-POSS modified PVB-a hybrids, in general, results in lower Tg than the pure PVB-a due to poor missibility.  相似文献   

11.
Nanostructured epoxy networks, based on DGEBA and poly(oxypropylene)diamine (Jeffamine D), containing nano-sized inorganic blocks, polyhedral oligomeric silsesquioxanes (POSS), were investigated. The POSS were incorporated in the network as crosslinks or as pendant units by using octa- or monoepoxy-POSS monomers, respectively, as well as diepoxides with pendant POSS. The authors focused on investigating the relationship between the network formation process and the final product properties. The reactivity of the epoxy-functional POSS monomers, the hybrid systems' time of gelation, the gel fractions and the phase structure of the networks were determined using 1H or 13C NMR spectroscopy, chemorheology experiments, sol-gel analysis and transmission electron microscopy (TEM).All the POSS epoxides tested show a reduced reactivity if compared to their respective model compounds due to sterical crowding in the neighborhood of their functional groups and due to reduced epoxy group mobility. The incorporation of pendant POSS into networks of the type DGEBA-Jeffamine D-monoepoxy-POSS hence took place only in the late reaction stage. Together with the high tendency of these POSS to aggregation, the kinetics favors the formation of small nano-phase-separated POSS domains, which act as physical crosslinks due to their covalent bonds to the organic matrix. At POSS loadings higher than 70%, topological constraint by POSS leads to a strongly reduced elastic chain mobility, thus additionally strongly reinforcing the networks. The network build-up and gelation of the octaepoxy-POSS-Jeffamine D system were slow compared to the reference DGEBA-Jeffamine D network due to a low octaepoxy-POSS reactivity and due to its strong tendency to cyclization reactions with primary amines. The topology of the amino groups is shown to be very important. In contrast to monoepoxy-POSS, the octaepoxy-POSS becomes dispersed as oligomeric junctions (purely chemical crosslinks) of the network in the cured product. The octaepoxide's reinforcing effect is small and is given only by its high functionality and not by its inorganic nature. The functionality effect is reduced by the mentioned cyclizations.  相似文献   

12.
有机/无机杂化材料的改性及应用是目前材料科学中最富有活力的研究领域之一。其中笼型倍半硅氧烷(Polyhedral oligomeric silsesquioxane,POSS)在分子水平上实现了有机组分与无机组分的结合,结构呈硅氧骨架连接的立体笼型,具有优异的反应活性、耐热阻燃性、多孔性和纳米尺寸效应等特性,通过化学改性可将其应用在多个领域。本文主要从官能团改性、聚合改性和配位改性三个方面阐述了POSS的改性方法,综述了POSS在耐热材料、阻燃材料、增强材料和多孔材料等领域的应用研究进展,并对POSS今后的研究方向提出了展望。可从POSS的构效关系、改性方法以及安全性等方面进行更加深入和系统的研究,以促进POSS材料更广泛的应用。  相似文献   

13.
交联POSS-聚氨酯胶的结构与性能研究   总被引:1,自引:0,他引:1  
采用含八乙烯基的POSS为原料,与不同的聚氨酯预聚体进行共聚,合成了一系列POSS基高分子胶粘剂材料。通过表面红外(ATR)、广角X射线衍射(WAXD)和动态力学分析(DMTA)等方法表征了杂化胶粘剂的热性能。  相似文献   

14.
Yonghong Liu 《Polymer》2006,47(19):6814-6825
A readily available octa(3-chloropropyl) polyhedral oligomeric silsesquioxane (POSS) [(ClCH2CH2CH2)8Si8O12] framework was used to prepare octa(3-hydroxypropyl) POSS [(HOCH2CH2CH2)8Si8O12], which was further used as an initiator to synthesize star poly(?-caprolactone) with POSS core via ring-opening polymerization catalyzed by Stannous (II) octanoate [Sn(Oct)2]. The organic-inorganic star PCLs were characterized by means of gel permeation chromatograph (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). The wide-angle X-ray diffraction (WAXRD) experiments indicate that the presence of POSS cores did not alter the crystal structure of PCL. The star PCLs exhibited enhanced melting temperatures in comparison with the linear counterpart. The isothermal crystallization kinetics shows that both the overall crystallization rate and the spherulitic growth rate of the star PCLs increased with increasing the concentration of POSS (or with decreasing the arm lengths of the stars). The fold surface free energy of the star PCLs decreased with increasing the concentration of POSS. These results could be interpreted based on the effect of the heterogeneous nucleation of POSS cores, which accelerates the process of crystallization.  相似文献   

15.
The structure and properties of organic-inorganic hybrid nanocomposites prepared from a resole phenolic resin and a POSS mixture containing >95 wt% trisilanolphenyl POSS was investigated by POM (polarized optical microscopy), SEM, TEM, WAXD, FT-IR, DSC, and TGA techniques. Composites with 1.0-10.4 wt% of POSS were prepared by dissolving the POSS and the phenolic resin into THF, followed by solvent removal and curing. Both nano- and micro-sized POSS filler aggregates and particles were shown to be heterogeneously dispersed in the cured matrix by POM, TEM, SEM, and X-EDS. POSS was found everywhere, including in both dispersed phase domains and in the matrix. The nanocomposite morphology appears to form by a multi-step POSS aggregation during the process of phase separation. Both the matrix and dispersed ‘particulate’ phase domains are mixtures of phenolic resin and POSS. POSS micro-crystals act as the core of the dispersed phase. The bigger dispersed domains consist of smaller particles or aggregates of POSS molecules that exhibit some order but regions of matrix resin are interspersed. A WAXD peak at 2θ∼7.3° indicates crystalline order in the POSS aggregates. This characteristic peak's intensity increases with an increase in POSS loading, suggesting that more POSS molecules have aggregated or crystallized. FT-IR spectra confirm that hydrogen bonding exists between the phenolic resin and POSS Si-OH groups. This increases their mutual compatibility, but H-bonding does not prevent POSS aggregation and phase separation during curing. TGA measurements in air confirmed the temperature for 5% mass loss in increases with increase of POSS loading and at T>550° the thermal stability increases more sharply with POSS loading. The nanocomposite glass transition temperatures (Tg) are only slightly be affected by the POSS filler.  相似文献   

16.
Yiqiang Zhao 《Polymer》2005,46(25):11640-11647
A series of composite materials were produced incorporating polyhedral oligomeric silsesquioxane (POSS) derivatives into polycarbonate (PC), by melt blending. Significant differences in compatibility were observed depending on the nano-scale filler's specific structure: trisilanol POSS molecules generally provided better compatibility with PC than fully-saturated cage structures, and phenyl-substituted POSS grades were shown to be more compatible with PC than fillers with other functional groups. Trisilanolphenyl-POSS/PC composites possess the best overall performance among the POSS materials tested. The high compatibility between the trisilanolphenyl-POSS and polycarbonate matrix results in generation of transparent samples up to 5 wt% POSS content. Slightly enhanced mechanical properties including tensile and dynamic mechanical modulus are observed with the increase of trisilanolphenyl-POSS loading at the cost of decreasing ductility of the nanocomposites. Importantly, upon orientation of the PC/POSS nanocomposite, crystallization of POSS within the oriented material results—this observation is consistent with a growing number of observations which suggest that ‘bottom-up’ formation of structures incorporating multiple POSS cages result from orientation of these nanocomposites, and that the hybrid organic-inorganic inclusions may be at the heart of observed nano-scale reinforcement.  相似文献   

17.
18.
《Polymer》2013,54(20):5374-5381
The star-shaped amphiphilic inorganic–organic hybrid polymer POSS-(PEO)8 prepared via click chemistry can self-assemble into spherical aggregates by directly dissolving the hybrid polymer in water. The regular spherical aggregates were gradually transformed to deformed spherical aggregates, cylinders and sheets through adding different amount of α-CD molecules into the POSS-(PEO)8 spherical aggregates solution due to the host-guest inclusion complexation between POSS-(PEO)8 aggregates and α-CD. Adding different amount of phenol which captured α-CD from PEO chains or increasing the environmental temperature of the self-assemblies solutions which also led to the slipping of α-CD out of PEO can reversibly and dynamically change the sheets to cylinders, deformed spherical aggregates or regular spherical aggregates, showing that the reversibly nanostructural dynamical-change can be induced by altering the environmental conditions of the solutions.  相似文献   

19.
A review is presented of the recent developments concerning the use of polyhedral oligomeric silsesquioxane (POSS) for designing polymer nanocomposites endowed with enhanced fire retardancy. Emphasis is placed on the scientific and technological advances in the use of POSS as fire retardants, as well as on the achievements and challenges associated to the exploitation of POSS either alone or in combination with conventional fire retardants to provide the required fire retardancy to polymer materials. Polymer/POSS nanocomposites show a great potential to provide materials characterized by improved fire retardancy together with superior physical properties and environmental neutrality. Achievements obtained with POSS in fire retardancy are presented for the different types of polymer materials and critically discussed, especially in terms of the modes of fire retardant action, in the attempt to reveal attractive strategies for successful development of the next generation of polymer/POSS materials and applications.  相似文献   

20.
The rheological behavior of ethylene-propylene (EP) copolymers containing polyhedral oligomeric silsesquioxane (POSS) molecules was investigated by means of wide-angle X-ray diffraction (WAXD), oscillatory shear, stress and strain controlled rheology in the molten state and dynamic mechanical analysis (DMA) in the solid state. WAXD results showed that the majority of POSS molecules in the EP melt were present in the crystal form. Oscillatory shear results showed that the EP/POSS nanocomposites exhibited a solid-like rheological behavior compared with the liquid-like rheological behavior in the neat resin, i.e. POSS caused physical gelation in EP. While POSS exhibited only a minimum effect on the flow activation energy of EP, the high POSS concentration samples were found to induce higher yield stress than the neat resin. This behavior was similar to the Bingham rheology, indicative of a structured fluid. DMA results indicated that the presence of POSS increased the Young's modulus as well as the Tg of the EP copolymer. These results suggested that two types of interactions contributed to the physical gelation in EP/POSS melts were present: the strong particle-to-particle interactions between the POSS crystals and the weak particle-to-matrix interactions between the POSS crystals and the EP matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号