首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we consider the process development and scaling up of trickle-bed reactor for 1,4-butynediolsynthesis.Three laboratory chemical reactors have been used,i.e.,a batchwise stirred kettle for the de--termination of intrinsic kinetics,a continuous rotating basket reactor for macrokinetics of large catalystpellets,and an external recycle differential trickle-bed reactor for bed-kinetics under liquid flow rates of in-dustrial equipment.The kinetic data obatined from above three reactors can be correlated in power form rate equations,and the results not only present definite proof of the relationships between contacting effectiveness factorsand liquid flow rates developed by Satterfield,but also verify the influences of liquid flow rates under higherand lower temperatures.The external contacting effectiveness factors in trickle-bed reactor we determined can be used to correctthe macrokinetic models of catalyst pellets determined from rotating basket,and the corrected kinetic modelscan be checked by an adiabatic pilot equipment with rather successful results.  相似文献   

2.
The indirect photocatalytic reduction of arsenate to arsenite in aqueous solution with titanium dioxide(TiO_2)was investigated with various hole scavengers such as methanol, ethanol, 2-propanol, formaldehyde, acetone,formic acid and acetic acid. Although the direct photocatalytic reduction of arsenate to arsenite with TiO_2 was impossible, an indirect reduction of As(V) was possible in the presence of sacrificial electron donors to form strongly reductive radicals. The addition of ethanol was very effective for indirect photocatalytic reduction of As(V) in aqueous solution with TiO_2 photocatalyst. The indirect photocatalytic reduction rate of As(V) may be related with both the reaction rate constants of reaction of hydroxyl radicals with hole scavenger and the reactivities for the radicals M· which are produced by the reaction of ·OH with hole scavenger.  相似文献   

3.
A reliable kinetic model to describe the effects of various factors on the reaction rate and selectivity of pinene isomerization is developed. Furthermore, computational fluid dynamics(CFD) is applied to simulate the solid–liquid dispersion in reactor. The catalyst Ti M is obtained by improving the composition and structure of hydrated titanium dioxide. The kinetic equation of pinene isomerization is deduced based on reaction mechanism and catalyst deactivation model. The kinetic equation of pinene isomerization reaction is fitted, and the results show that the fitted equation is correlated with the experimental data. The rate and selectivity of pinene isomerization reaction are affected by the amount of catalyst, deactivation of catalyst, structure of catalyst, reaction temperature and water content of catalyst. The solid–liquid distribution of the reactor is calculated by computational fluid dynamics numerical simulation, and the solid–liquid dispersion in commercial scale reactor is more uniform than that in lab-scale reactor.  相似文献   

4.
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 °C, while the effect was evident at 650 and 700 °C but became limited again above 800 °C. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics.  相似文献   

5.
The study herein investigated the effectiveness of simultaneous use of ozone and hydrogen peroxide(O_3/H_2O_2 process) to degrade o-phenylenediamine(o-PDA) in a simulated wastewater. A rotor–stator reactor(RSR) was employed to create a high-gravity environment in order to enhance ozone-liquid mass transfer rate and possibly improve the degradation rate of o-PDA. The degradation efficiency of o-PDA(η) as well as the overall gas-phase volumetric mass transfer coefficient(KGa) were determined under different operating conditions of H_2O_2 concentration, initial o-PDA concentration, temperature of reaction, initial p H and rotation speed of RSR in attempt to establish the optimal conditions. Chemical oxygen demand reduction rate(rCOD) of wastewater treated at a particular set of conditions was also analyzed. Additionally, the intermediate products of degradation were identified using a gas chromatography-mass spectrometer(GC/MS) to further evaluate the extent of o-PDA degradation as well as establish its possible degradation pathway. Results were validated by comparison with those of sole use of ozone(O_3 process), and it was noted that η, KGa and rCODachieved by O_3/H_2O_2 process was 24.4%,31.6% and 25.2% respectively higher than those of O_3 process, indicating that H_2O_2 can greatly enhance ozonation of o-PDA. This work further demonstrates that an RSR can significantly intensify ozone-liquid mass transfer rate and thus provides a feasible intensification means for the ozonation of o-PDA as well as other recalcitrant organics.  相似文献   

6.
空化流中空穴的溃灭强度和诱导的自由基浓度   总被引:3,自引:1,他引:2       下载免费PDF全文
Enhancing the chemical reaction processes by means of the energy released in the collapse of micro bubbles or cavities in the cavitation flow is a new research area. In the previous work, a new approach of measuring concentration of free hydroxyl radicals induced in cavitation flow by using methylene blue as the indicator was developed and used to study concentration of free radical induced in Venturi cavitation flow under various experimental conditions. In the present research, the radial evolution of a cavity bubble and the corresponding collapse pressure in sonic cavitation field are obtained by solving three different bubble dynamics equations: Rayleigh equation, Rayleigh-Plesset equation and Gilmore equation. By comparing with the experimental data on the radial evolution of a cavity bubble in the literature, it is found that the predicted results by the Gilmore equation, which takes account of the compressibility of fluid in addition to the viscosity and interfacial tension, agree with the experimental ones better than those by other two equations. Moreover, the theoretically predicted collapse pressures are consistent with the concentration of the free hydroxyl radical induced in the experimental venture. Thus, the concentration of the liberated free hydroxyl radical not only influences the reaction rate but also is used as an available parameter for measuring collapse intensity of cavities.  相似文献   

7.
The chemical stability of cefixime was determined by high-performance liquid chromatography(HPLC) under different conditions, including factors such as p H, solvents, initial concentration, temperature and additives.The degradation process follows the first-order kinetics. A p H-rate profile exhibits the U-shape and shows the maximum stability of cefixime at pH = 6. The stability in different pure solvents is ranked as acetone N ethanol N methanol N water, while the degradation rate of cefixime exists a maximum at the ratio of 0.6 in water + methanol mixtures. In addition, the degradation rate increases with the temperature increasing and the activation energy of degradation was found to be 27.078 k J·mol~(-1) in acetone + water mixed solvents. The addition of different additives was proven to either inhibit or accelerate the degradation. The degradation products were analyzed using HPLC, LC–MS and infrared spectroscopy, and the possible degradation pathways in acid as well as alkaline environment were proposed to help us understand the degradation behavior of cefixime.  相似文献   

8.
TiO_2 nanoparticles coated cotton fiber composite was successfully prepared by using a sol-gel method at low temperature(about 100℃) using tetrabutyl-titanate [Ti(OBu)_4] as raw material.The preparation of the TiO_2 colloid and the composite were described.The properties of resulting materials were characterized by SEM and XRD,the photocatalytic degradation performance was tested using methylene blue(MB) as the target pollutant in aqueous solution.The results showed that the amorphous TiO_2 nanoparticles were distributed evenly on the outer surfaces of cotton fibers,which shows efficient photocatalytic properties when exposed to UV light,the degradation rate of MB reached 95.35% under the conditions of catalyst dosage 2.5 g/L,MB concentration 50 mg/L,irradiation time 120 min,and pH 10,and the photocatalytic activity of TiO_2/cotton fibers remained above 90% of its activity as-prepared after being used four times,the degradation rate of MB could reach 88.78% when irradiation time was 120 min.The photocatalytic degradation of MB could be properly described by the first-order kinetic law.By comparison of the removal rates of MB with and without UV light,it could be affirmed that the disappearance of MB was due to photodegradation rather than adsorption on cotton fibers.  相似文献   

9.
In this study, a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O_3) reactor has been developed. Using 1-phenylethanol as a model reactant, the performance of RPB-O_3 process in different solvents has been compared with the commonly used stirred tank reactor(STR-O_3). Ethyl acetate was the optimum solvent for the conversion of 1-phenylenthanol to acetophenone in RPB-O_3 process, with 78% yield after 30 min. In a parallel STR-O_3 experiment, the yield of acetophenone was50%. Other experimental variables, i.e. O_3 concentration, reaction time, high-gravity factor and liquid flow rate were also optimized. The highest yield of acetophenone was obtained using O_3 concentration of 80 mg·L~(-1),reaction time of 30 min, high gravity factor of 40 and liquid flow rate of 120 L·h~(-1). Under the optimized reaction conditions, a series of structurally diverse primary and secondary alcohols was oxidized with(19%–92%) yield.The ozonization mechanism was studied by Electron Paramagnetic Resonance(EPR) spectroscopy, monitoring the radical species formed upon self-decomposition of O_3. The characteristic quadruple peak with the 1:2:2:1 intensity ratio that corresponds to hydroxyl radicals(·OH) was observed in the electron paramagnetic resonance(EPR) spectrum, indicating an indirect oxidation mechanism of alcohols via ·OH radical.  相似文献   

10.
The catalysts of Co/Zr-SiO2 were prepared by precipitation and the promoter of Pt was supported by impregnation. The reducibility of the cobalt oxide and the other physicochemical properties of the catalysts were characterized by TPR, TPD, BET and XPS. With the evaluation of the reduction temperature, the reduction degree increased but the surface area of the catalysts and the adsorption property for reactant CO distinctly decreased; The addition of Pt resulted in the improvement of the reducibility by decreasing the reduction temperature of cobalt oxide species. The FT-synthesis has been performed in a quartz fixed-bed reactor, and the experimental results showed that the best activity for promoted catalyst has been found at the reduction temperature of 400℃, in spite of its uncompleted reduction.  相似文献   

11.
超声气升式反应器处理乐果水溶液   总被引:2,自引:0,他引:2  
Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 flow rate, ultrasonic intensity and initial concentration of dimethoate on degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. The results showed that UALR not only increased degradation rate, but also was better than the simole sum of degradation by O3 and ultrasound separately. Under the operation conditions of O3 flow of 0.34 m^3·h^-1, ultrasonic intensity 3.71 W.cm^-2, and initial concentration of dimethoate at 20 mg·L^- 1, the degradation rate of dimethoate increased to 80%. UALR seems an advisable choice for treating organic wastewater and this process may have wide application prospect in industry.  相似文献   

12.
In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path Flux Analysis (PFA). It is used to reduce a detailed mechanism for flame inhibited by phosphorus containing compounds, a reduced mechanism with 65 species and 335 reactions is obtained. The detailed and reduced mechanism are both used to calculate the freely-propagating premix C3H8/air flame with different dimethyl methylphosphonate doped over a wide range of equivalence ratios. The concentration distributions of free radicals and major species are compared, and the results under two different mechanisms agree well. The laminar flame speed obtained by the two mechanisms also matches well, with the maximum relative error introduces as a small value of 1.7%. On the basis of the reduced mechanism validation, the correlativity analysis is conducted between flame speed and flee radical concentrations, which can provide information for target species selection in the further mechanism reduction. By analyzing the species and reactions fluxes, the species and reaction paths which contribute the flame inhibition significantly are determined.  相似文献   

13.
14.
A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pressure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis, reaction path analysis and quasi steady state (QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incorporating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method, and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation, growth, and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region between the peak flame temperature and peak acetylene concentration locations, and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.  相似文献   

15.
Membrane fouling is often considered as a hindrance for the application of microfiltration/ultrafiltration(MF/UF) for drinking water production. A novel process of photocatalytic membrane reactor/dynamic membrane(PMR/DM), operating in a continuous mode under sub-critical flux, was proposed for the mitigation of membrane fouling caused by humic acids(HAs) in water. The mechanism of membrane fouling alleviation with synergistic photocatalytic oxidation and dynamic layer isolating effect was comprehensively investigated from the characterization of foulant evolution responsible for the reversible and irreversible fouling. The results showed that the PMR/DM utilized photocatalytic oxidation to enhance the porosity and hydrophilicity of the fouling layer by converting the high molecular weight(MW) and hydrophobic HA molecules with carboxylic functional groups and aromatic structures into low-MW hydrophilic or transphilic fractions, including tryptophan-like or fulvic-like substances. The fouling layer formed in the PMR/DM by combination of photocatalytic oxidation and DM running at a sub-critical flux of 100 Láhà1ámà2, was more hydrophilic and more porous, resulting in the lowest trans-membrane pressure(TMP) growth rates, as compared to the processes of ceramic membrane(CM), DM and PMR/CM.Meanwhile, the dynamic layer prevented the foulants, particularly the high-MW hydrophobic fractions,from contacting the primary membrane, which enabled the membrane permeability to be restored easily.  相似文献   

16.
Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-by packed-bed reactor.Optimal increase in PAP selectivitycan be obtained at about a frequency of 50Hz and a duty cycle of 0.2.A mathematical model isset up to incorporate the effects of mass transfer,hydrogen evolution and double layer charging,and is solved using the Duhamel's superposition principle and the modified Crank-Nicolson methodwith the upwind scheme.The conventional d.c.control cases are also calculated for comparison.Calculations can be applied to predict the reaction results under periodic current and d.c.control,but both display the same trends compared to experimental data.  相似文献   

17.
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.  相似文献   

18.
Methylphenyldichlorosilane (MPDS, CH3C6H5SiCl2) is an important silicone monomer for the synthesis of high-performance polymethylphenylsiloxane polymers. In this work, the mechanism of the synthesis of MPDS from methyldichlorosilane and chlorobenzene by gas phase condensation was studied, and a kinetic model with 35 species and 58 elementary reactions was established. Experiments were carried out in a tubular reactor under a wide range of reaction conditions. The calculated mole fractions of the reactants and products were in a good agreement with the experimental results. A mechanism of the insertion of chloromethylsilylene into the C-Cl bond of chlorobenzene was proposed, which was proved to be the main pathway of MPDS production. The established kinetic model can be used in design and optimization of the industrial reactor for MPDS synthesis.  相似文献   

19.
The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm~(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.  相似文献   

20.
It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号