首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a microfluidic environment, the liquid–liquid interface, formed by laminar flows of immiscible solutions, can be used to generate thin membranes via interfacial polymerization. Because these thin nylon membranes have a very small pore size or lack porosity entirely, their utilization in some biological applications is greatly limited. We introduce an in situ fabrication method using the interfacial reaction of a two‐phase system to generate a porous nylon membrane. The membranes were characterized with scanning electron microscopy and fluorescent beads. Scanning electron microscopy micrographs verified the asymmetrical structure of the porous membrane, and the membrane pore sizes ranged from 0.1 to 1 μm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

2.
C60衍生物在金表面的自组装   总被引:1,自引:0,他引:1  
利用叠氮化反应和[4+2]环加成反应合成了含2, 2?:6?,2?–三联吡啶基团的C60衍生物. 研究了它在Au(111)面上的自组装,STM研究发现,可以在Au(111)面上形成较高质量的单层膜. 同时研究了它在金纳米粒子表面的自组装, 发现可以通过调节搅拌速度来获得不同粒径的金纳米粒子,搅拌速度越快金纳米粒径越小,而用超声波振荡也可获得较小粒径的金纳米粒子.  相似文献   

3.
The stability of citrate-capped gold nanoparticles assembled on covalently attached ethylenediamine films on glassy carbon was probed using cyclic voltammetry and scanning electron microscopy. The accessible potential windows in 0.01 M HClO4 and phosphate buffer (pH 7.4) were found to be very similar to those for re-constructed polycrystalline bulk gold. At the nanoparticle electrodes, gold is dissolved at high positive potentials and re-deposited at lower potentials resulting in the formation of fewer, larger particles. The electrografted amine layer does not limit the stability range and citrate-capping groups do not stabilise the nanoparticles to oxidation. In addition to the structural stability of the nanoparticle electrodes, preliminary investigations of the stability of their activity for voltammetric analyses were also undertaken. Repeated voltammetric reduction of H2O2 at the nanoparticle electrodes showed excellent reproducibility indicating that the nanoparticle surface maintained a constant activity for the redox process. In contrast, a re-constructed polycrystalline bulk gold electrode did not exhibit a stable response under the same conditions.  相似文献   

4.
In this study, new asymmetric polyurethane (PU) mixed‐matrix membranes with different nanohydroxyapatite loadings were prepared via a dry–wet phase inversion method by the dispersion of hydroxyapatite (HA) nanoparticles in the PU matrix. The HA nanopowder was obtained by a wet chemical precipitation method; it showed an average crystallite size of 58.3 nm, a specific surface area of 261 m2/g, and a pore size of about 1.6 nm. The effects of the HA loading (10–50 wt %) on the PU membrane characteristics were studied. The scanning electron microscopy images revealed that the HA nanoparticles were well dispersed enough in the PU matrix. The average pore size in the top layer and porosity of the membranes slowly decreased, whereas the hydrophilicity and water permeability increased with increasing content of HA. The evaluation of the nanofiltration performance was performed by investigation of the NaCl rejection. The composite membranes had a higher salt‐removal capacity than the unfilled PU membrane. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41813.  相似文献   

5.
A simple and fast plasma reduction method is developed for synthesis of Au and Pd metal nanoparticles. The scanning electron microscopy (SEM) analysis indicates a formation of aggregates of Au and Pd nanoparticles with branched structure. The transmission electron microscopy (TEM) image shows that the inclusive nanopar-ticles are al about 5 nm in size. Compared to conventional hydrogen reduction method, plasma method inhibits the agglomeration of metal particles. The room temperature operation is very helpful to limit the nanoparticle size. Most interestingly, plasma reduction produces more flattened metal particles. This plasma reduction does not require the use of any hazardous reducing chemicals, showing the great potential for the fabrication of noble metal nanoparticles.  相似文献   

6.
Cellulose acetate butyrate/TiO2 hybrid membranes were prepared via phase inversion by dispersing the TiO2 nanoparticles in casting solutions. The influence of TiO2 nanoparticles on the morphology and performance of membranes was investigated. The scanning electron microscope images and experiments of membrane performance showed that the membrane thickness and pure water flux were first increased by adding the TiO2 nanoparticles to the casting solution up to 4 wt% and then decreased with the addition of further nanoparticles to it. The obtained results indicated that the addition of TiO2 in the casting solution enhanced the rejection and permeate flux in filtration of bovine serum albumin solution. Furthermore, increasing the TiO2 nanoparticle concentration in the casting solution increased the flux recovery and consequently decreased the fouling of membrane.  相似文献   

7.
In this study, a commercial polyamide nanofiltration membrane was modified by a combination of poly(ethylene glycol) diacrylate (PEGDA) in situ polymerization and silica (SiO2) nanoparticles. The PEGDA layer was polymerized on the surface of the membranes alone or mixed with SiO2 nanoparticle. The surface modification influence on the water flux, salt rejection, and antifouling behavior was investigated. The effects of the nanoparticles and PEGDAylation on the membrane properties were characterized by Fourier transform infrared spectroscopy, contact angle measurement, and scanning electron microscopy analyses. The membranes that were in contact with 30 wt % PEGDA and then treated with ultraviolet light for 5 min had a better water flux than the unmodified membrane. The fouling resistance of the membranes to a foulant solution containing bovine serum albumin, humic acid, and sodium sulfate were studied, and the results show that the membrane with 30 wt % PEGDA had better antifouling properties. After the weight percentage of PEGDA for the prepolymerization solution was optimized (30 wt % was the best), the SiO2 nanoparticle concentration in the prepolymerization matrix was optimized. The presence of SiO2 nanoparticles in the PEGDA layer increased the membrane flux. The maximum water flux and good antifouling properties were obtained for 0.5 wt % SiO2 nanoparticles in a 30 wt % PEGDA layer. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43793.  相似文献   

8.
In this work, neat and modified nanodiamond (ND) particles were embedded into high-density polyethylene (HDPE) membranes to improve hydrophilicity and antifouling properties. The membranes were prepared via thermally induced phase separation (TIPS) method and used for pharmaceutical wastewater treatment in membrane bioreactors (MBR) system. To prevent the agglomeration of ND, it was modified using two methods: thermal carboxylation (ND-COOH) and grafting with polyethylene glycol (ND-PEG). Membranes with different concentration of ND-COOH and ND-PEG nanoparticles ranging from 0.00 to 1.00 wt % were prepared and characterized using a set of analyses including water contact angle, pure water flux, tensile strength, differential scanning calorimeter, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that the optimum contents of ND-COOH and ND-PEG nanoparticles were 0.50 wt % and 0.75 wt %, respectively. The interfacial interaction between nanoparticles and HDPE matrix was studied based on Pukanzsky model. To examine the performance of membranes, critical flux, filtration experiment in the MBR, and fouling analysis of membranes were carried out. The results showed that among the fabricated membranes, 0.75 wt % HDPE/ND-PEG membrane had the highest water flux and the best antifouling properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47914.  相似文献   

9.
A method was developed for introducing metallic nanoparticles (nanoAg and nanoAu) into cosmetic compositions (shampoos and soaps). Embedding of silver or gold nanoparticles into the composition imparts antimicrobial activity. Physicochemical properties of the prepared formulations were characterized. To confirm the presence of metallic nanoparticles, a UV–vis study was conducted. The size of embedded nanoparticles was determined using dynamic light scattering. The micrometric structure of the obtained products was characterized using scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM‐EDS) microscopy. A technique was developed for the assessment of nanoparticle release from cosmetic products as well as for the analysis of the penetration of nanoparticles through a model dermal membrane. The evaluation of accumulation of nanoparticles in model human body fluids was a crucial step in this study. The antimicrobial properties of final cosmetic formulations were studied using Aspergillus niger. The results confirmed that stable cosmetic formulations with embedded metallic nanoparticles were obtained. It was determined that nanoparticles are able to penetrate through a model dermal membrane. However, after 20 min of washing, the migration of nanoparticles was not confirmed. The obtained products exhibited biocidal activity against A. niger.  相似文献   

10.
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface‐enhanced Raman scattering and surface‐enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS‐active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
以溴化苄为疏水改性剂,采用双分子亲核取代反应(SN2)制得苄基接枝海藻酸衍生物(BAD)。通过动态光散射技术,考察了在不同p H和离子强度下BAD对Ti O_2纳米粒水悬浮液分散稳定性的影响。并采用红外光谱和扫描电镜对BAD/Ti O_2纳米粒复合物的官能团和表面形貌进行了测试。结果表明,通过SN2反应成功地合成了具有胶体性能的BAD。BAD胶束的平均水动力学粒径(dH)大小为423.4 nm,Zeta电位值为-27.4 m V,表现出较好的胶体性能。在不同p H下,BAD的吸附可提高Ti O_2纳米粒的带电性,使其Zeta电位均低于-30 m V,而且其dH相比单一的Ti O_2纳米粒显著减小。在不同离子强度下,BAD可明显削弱反离子对Ti O_2纳米粒静电屏蔽作用的影响,使Ti O_2纳米粒的团聚行为大大降低,dH显著减小。BAD分子链不仅能够提高Ti O_2颗粒间的静电斥力,而且还能提供有效的空间位阻,提高Ti O_2纳米粒在不同p H和离子强度下的分散稳定性。红外和扫描电镜分析结果表明,BAD和Ti O_2纳米粒主要通过氢键作用来实现BAD在Ti O_2纳米颗粒上的吸附,从而提高Ti O_2纳米颗粒间的空间位阻作用使其稳定分散。  相似文献   

12.
In this study, nylon 6 membranes were prepared in a water coagulation bath with two types of solvents, CaCl2–methanol (CaClMe) and formic acid (FA). The morphology of the membranes, which was controlled by the phase behavior of their solutions, were connected to the mechanism of demixing, including liquid–liquid and liquid‐crystallization. Ternary phase diagrams showed that the CaClMe system coagulated significantly faster than the FA system. As observed by scanning electron microscopy, the CaClMe membrane had a porous, interconnected pore structure with macrovoids, whereas the FA membrane had a dense, spherulitic surface with a closed cell morphology. The high reaction surface of the CaClMe membrane with dye molecules provided outstanding dye rejection. Also, thermal analysis by differential scanning calorimetry showed that the slow coagulation of the FA system facilitated the formation of stable α‐form crystals rather than a metastable γ‐form structure. The results show that the phase‐separation mechanism was switched from liquid–liquid to liquid‐crystallization through a change in the solvent type from CaClMe to FA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The effect of uni-axial stretching on the material properties of macroporous poly(vinylidene fluoride) (PVDF) membranes was experimentally determined. Atomic force microscopy (AFM), differential scanning calorimetry, scanning electron microscopy, and digital image analysis were used to characterize physical structure of the membrane before and after stretching. The effects of strain rate, temperature, and total strain on pore aspect ratio, pore area, surface roughness, glass transition temperature, porosity, and membrane thickness were all examined in this study. Membrane stretching was found to dramatically change the pore structure of PVDF membranes, but was found to have little effect on polymeric properties such as glass transition temperature. Current popular AFM characterization techniques were unable to capture the physical changes in the surface morphology.  相似文献   

14.
Gold nanoparticles are dispersed into thiol-functionalized multi-wall carbon nanotubes (MWCNTs). The thiol groups were utilized as linker to hold the gold nanoparticles without agglomeration. γ-Radiation was used as source to reduce gold metal ions without having any additional reducing agents. Field emission transmission electron microscopy, UV–visible spectroscopy and X-ray diffraction analysis were used to confirm the existence of Au metallic particles in the MWCNT matrix.  相似文献   

15.
The goethite nanoparticle was used as a multifunctional additive to fabricate antifouling polyethersulfone (PES) nanofiltration membranes. The goethite/PES membranes were synthesized via the phase inversion method. The scanning electron microscopy (SEM) photographs showed an increase in pore size and porosity of the prepared membranes with blending of the goethite. The static water contact angle measurements confirmed a hydrophilic modification of the prepared membranes. With increase in the goethite content from 0 to 0.1 wt %, the pure water flux increased up to 12.7 kg/m2 h. However, the water permeability decreased using high amount of this nanoparticle. Evaluation of the nanofiltration performance was performed using the retention of Direct Red 16. It was observed that the goethite/PES membranes have higher dye removal capacity (99% rejection) than those obtained from the unfilled PES (89%) and the commercial CSM NE 4040 NF membrane (92%). In addition, the goethite/PES blend membranes showed good selectivity and antifouling properties during long‐term nanofiltration experiments with a protein solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43592.  相似文献   

16.
AgCl/poly(methyl methacrylate) (PMMA) organic–inorganic hybrid membrane has been synthesized by reverse microemulsion polymerization using triblock copolymer polyoxyethylene–polyoxypropylene–polyoxyethylene as surfactant and MMA as oil phase. The results by ultraviolet–visible spectrum, transmission electron microscopy, and scanning electron microscopy showed that small AgCl nanoparticles distributed well in the F127 microemulsions and hybrid membranes at low reactant concentration. AgCl nanoparticles in the microemulsion became smaller with increasing reactant concentration. However, AgCl nanoparticles aggregated obviously in hybrid membranes, when reactant concentration was more than 0.15 mol L?1. The performance of different hybrid membranes for separation of the benzene and cyclohexane was measured. The results indicated that the separation performance of membrane was promoted obviously due to presence of more well‐dispersed AgCl particles in hybrid membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
In this study, a new approach was developed to prepare the novel thin film composite nanofiltration membranes. In this new approach, nanoparticles were coated completely under the polymeric thin film layer. Thin film composite (TFC) membranes were fabricated by interfacial polymerization on polysulfone (PSf) sublayer using m-phenylenediamine (MPD) and trimesoyl chloride (TMC) respectively as amine monomer and acid chloride monomer. Scanning electron microscopy and atomic force microscopy were used to study surface morphology and roughness properties of NF membranes. Energy dispersive X-ray microanalysis (EDX) was used to analyze the elemental change before and after filtration experiment. Chemical structure and thickness of polyamide formed on TFC membranes were observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Permeability, salt rejection and pepsin macromolecule rejection of prepared membranes were tested using dead end filtration cell. Antifouling behavior of the membranes was studied by filtering pure water before and after pepsin solution filtration. A smoother and thicker surface without any defect appeared as the concentration of nanoparticle was increased. NaCl rejection was increased from 70% for neat nanofiltration membrane to 84% for 0.5 wt% TiO2 modified nanofiltration membrane. Antifouling and permeability behavior of the prepared membranes were improved in the new approach. Antibacterial property of prepared membranes was improved as a result of photocatalytic characteristic of TiO2 nanoparticles.  相似文献   

18.
Mixed matrix polyethersulfone (PES) based nanofiltration membrane was prepared through phase inversion method by using of polyvinylpyrrolidone (PVP) as pore former and N, N dimethylacetamide (DMAc) as solvent. Polyaniline-co-graphene oxide nanoplates (PANI/GO) were utilized as additive in membrane fabrication. The PANI/GO nanoplates were prepared by polymerization of aniline in the presence of graphene oxide nanoplates. FTIR analysis, scanning electron microscopy (SEM), scanning optical microscopy (SOM), 3D images surface analysis, water contact angle, water content tests, tensile strength tests, porosity tests, salt rejection and flux tests were used in membrane characterization. FT-IR results verified formation of PANI on graphene oxide nanoplates. SOM images showed uniform particles distribution for the mixed matrix membranes. SEM images also showed formation of wide pores for the modified membranes. Water flux showed constant trend nearly by use of PANI/GO in the casting solution. Opposite trend was found for the membrane surface hydrophilicity. Salt rejection was enhanced sharply by utilizing of PANI/GO. The membrane’s tensile strength was improved by increase of PANI/GO concentration. The water content was increased initially by use of PANI/GO nanoplates up to 0.05%wt into the casting solution and then decreased. Membrane porosity was also enhanced by using of PANI/GO nanoplates. Modified membrane containing 0.5%wt PANI/GO nanoplates showed more appropriate antifouling characteristic compared to others.  相似文献   

19.
Membranes were fabricated with high-density polyethylene(HDPE) and ethylene vinyl acetate(EVA) blend through thermally induced phase separation and were then used for vacuum membrane distillation(VMD).The membranes were supported by nonwoven polyester fabric with a special cellular structure. Different membrane samples were obtained by adjusting the polymer concentration, HDPE/EVA weight ratio, and coagulation bath temperature. The membranes were characterized by scanning electron microscopy(SEM) analysis, contact angle test, and evaluation of porosity and pore size distribution. A series of VMD tests were conducted using aqueous NaCl solution(0.5 mol·L~(-1)) at a feed temperature of 65 ℃ and permeate side absolute pressure of 3 kPa. The membranes showed excellent performance in water permeation flux, salt rejection, and long-term stability. The HDPE/EVA co-blending membranes exhibited the largest permeation flux of 23.87 kg·m~(-2)·h~(-1) and benign salt rejection of ≥99.9%.  相似文献   

20.
以聚丙烯腈(PAN)为纺丝液,采用自主设计研发的螺纹式喷头静电纺丝装置制备了幅宽为600 mm的纳米纤维膜。通过扫描电镜和孔径测定仪考察了纤维形貌以及直径分布,并测试了纳米纤维膜对0.26μm氯化钠粒子的过滤性能。结果表明:纤维的平均直径为138 nm,平均孔径为1.98μm,纤维膜平均厚度为0.025 mm;PAN纳米纤维膜过滤效率为99.899%,滤阻为280.9 Pa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号