首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the mass transfer performance of structured packings in the absorption of CO2 from air with aqueous NaOH solution. The Eight structured packings tested are sheet metal ones with corrugations of different geometry parameters. Effective mass transfer area and overall gas phase mass transfer coefficient have been measured in an absorption column of 200 mm diameter under the conditions of gas F-factor in 0.38–1.52 Pa0.5 and aqueous NaOH solution concentration of 0.10–0.15 kmol·m?3. The effects of gas/liquid phase flow rates and packing geometry parameters are also investigated. The results show that the effective mass transfer area changes not only with packing geometry parameters and liquid load, but also with gas F-factor. A new effective mass transfer area correlation on the gas F-factor and the liquid load was proposed, which is found to fit experiment data very well.  相似文献   

2.
3.
Kinetics of absorption of carbon dioxide in aqueous piperazine solutions   总被引:1,自引:0,他引:1  
In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to , and carbon dioxide pressures up to 500 mbar, respectively. The obtained experimental results were interpreted using the DeCoursey equation [DeCoursey, W., 1974. Absorption with chemical reaction: development of a new relation for the Danckwerts model. Chemical Engineering Science 29, 1867-1872] to extract the kinetics of the main reaction, 2PZ+CO2PZCOO-+PZH+, which was assumed to be first order in both CO2 and PZ. The second-order kinetic rate constant was found to be at a temperature of , with an activation temperature of . Also, the absorption rate of CO2 into partially protonated piperazine solutions was experimentally investigated to identify the kinetics of the reaction . The results were interpreted using the Hogendoorn approach [Hogendoorn, J., Vas Bhat, R., Kuipers, J., Van Swaaij, W., Versteeg, G., 1997. Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions. Chemical Engineering Science 52, 4547-4559], which uses the explicit DeCoursey equation with an infinite enhancement factor which is corrected for reversibility. Also, this reaction was assumed to be first order in both reactants and the second-order rate constant for this reaction was found to be at 298.15 K.  相似文献   

4.
This work investigates the feasibility of applying the cross-flow rotating packed bed (RPB) to the removal of carbon dioxide (CO2) by absorption from gaseous streams. Monoethanolamine (MEA) aqueous solution was used as the model absorbent. Also, other absorbents such as the NaOH and 2-amino-2-methyl-1-propanol (AMP) aqueous solutions were compared with the MEA aqueous solution. The CO2 removal efficiency was observed as functions of rotor speed, gas flow rate, liquid flow rate, MEA concentration, and CO2 concentration. Experimental results indicated that the rotor speed positively affects the CO2 removal efficiency. Our results further demonstrated that the CO2 removal efficiency increased with the liquid flow rate and the MEA concentration; however, decreased with the gas flow rate and the CO2 concentration. Additionally, the CO2 removal efficiency for the MEA aqueous solution was superior to that for the NaOH and AMP aqueous solutions. Based on the performance comparison with the conventional packed bed and the countercurrent-flow RPB, the cross-flow RPB is an effective absorber for CO2 absorption process.  相似文献   

5.
A one-dimensional numerical model for a detergent slurry drying process in a counter-current spray drying tower is developed for the prediction of the gas and droplet/particle temperature profiles within the tower. The model accommodates droplets/particles over a range of sizes. A semi-empirical slurry droplet drying model is integrated with a counter-current tower simulation based on mass, energy and particulate phase momentum balances in order to calculate the drying rate and the particle residence time within the tower. The coupled first order ordinary differential equations for the two phases are solved numerically using the iterative shooting method in an algorithm developed within MATLAB. The predictions of the numerical model are compared with industrial pilot plant data. The results are found to vary significantly with the specified size distribution of the droplets. Despite the simplicity of the model in ignoring the coalescence, agglomeration, wall deposition and re-entrainment, the model gives reasonable agreement with the experimental data.  相似文献   

6.
石灰石-石膏脱硫喷淋塔吸收区高度计算模型   总被引:5,自引:2,他引:3       下载免费PDF全文
祝杰  叶世超  吴振元  白洁  郑毅骏 《化工学报》2014,65(8):2896-2901
从液滴受力分析入手,建立了喷淋塔的比表面积和传质速率方程,将吸收区划分为变速段与恒速段,推导了吸收区高度的计算模型,引用工业脱硫塔实际的工艺数据验证了模型的正确性,讨论了操作参数对吸收区高度的影响。结果表明,增加喷淋密度、提高吸收液pH值、减小液滴直径,均可降低吸收区高度;提高操作气速、增大烟气入口SO2浓度,吸收区高度增加;脱硫率随塔高而增加,但当脱硫率超过90%以后,增加塔高对脱硫率的影响不大。  相似文献   

7.
CO2 absorption into absorbents is a widely used method to reduce carbon emissions, in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection (RC). Once RC occurs, the mass transfer rate will be significantly enhanced. Therefore, it is necessary to explore the mass transfer enhancement mechanism further and develop a penetration/surface divergence hybrid mass transfer model. In this study, we conduct research on the process of CO2 absorption into ethanol with RC. Firstly, we use a multi-relaxation time lattice Boltzmann method to simulate the absorption process and obtain the flow and concentration fields. And we also verify the reliability of the numerical simulation results by comparing with the experimental results. Then, we analyze the characteristics of non-uniform flow and concentration fields in RC. Moreover, we divide the near-interface region into diffusion-dominated and convection-dominated mass transfer zones by checking whether the horizontal average velocity is greater than 1.0×10-4 m·s-1. Furthermore, based on the differences in mass transfer mechanisms of the aforementioned two zones, we propose a penetration/surface divergence hybrid model to predict the instantaneous mass transfer coefficient. The prediction results demonstrate that the hybrid model can precisely predict the instantaneous mass transfer coefficient of the entire CO2 absorption process. Our proposed hybrid model provides a promising way to deal with the complex mass transfer problems with non-uniform flow and concentration fields.  相似文献   

8.
介绍了循环水冷却原理,提出适于我国西北地区的新型无填料喷雾冷却塔提高循环水利用率的优势及改造方案。  相似文献   

9.
Gas–liquid mass transfer of rotating disk reactor was studied in CO_2 absorption using 1,8-diazabicyclo-[5.4.0]-undec-7-ene(DBU)-glycerol solution as solvent. Effects of the rotating disk structure and various operation parameters on the CO_2 absorption rate and CO_2 removal efficiency were investigated. The rotating disk with optimal holes is conducive to mass transfer of CO_2 and the formation of thin liquid film at the opening increases the gas–liquid contact area. With the increase of rotating speed, the liquid flow pattern on the rotating disk surface changes from thin film flow to separated streams and creates extra liquid lines attached to the rim of the disk,which leads to a very complicated change on the CO_2 absorption rate and CO_2 removal efficiency. The overall gas-phase mass transfer coefficient increases 138% as the rotating speed increasing from 250 to 1400 r·min~(-1).Increasing temperature from 298 to 338 K can enhance the CO_2 absorption rate due to lowering the viscosity of the solvent. The rate-determined step for the absorption is focused on the gas side. The rotating disk reactor can effectively enhance the absorption of CO_2 with viscous DBU-glycerol solvents.  相似文献   

10.
研究了SO2在错流填料塔中的吸收率,结果表明,错流填料塔能更好地消除壁流,改善气液两相的接触状况;错流填料塔的吸收率明显大于普通填料塔,在气液两相流量一定时,吸收率随着板间距与塔径之比(H/D)的变化而变化,当H/D=0.8时,吸收率最大;当H/D<0.8时,随着气量的增加,吸收率逐渐减小,仅在小气速下,吸收率较大,在气速较大时,由于压降过大,导致吸收操作无法正常进行。  相似文献   

11.
刘应书  魏广飞  张辉  李虎  李小康 《化工学报》2014,65(8):3054-3061
醇胺溶液吸收CO2是沼气提纯领域重要的研究课题。在实验填料吸收塔中,以NaOH水溶液吸收低浓度CO2的实验结果估算了填料的有效相界面积,建立了乙醇胺(MEA)溶液吸收高浓度CO2增强因子的数学模型,并从数学模型和实验的角度研究了MEA浓度、进气流率、CO2浓度等工艺参数对MEA吸收CO2增强因子的影响。结果表明,增强因子数学模型计算值与实验值能够良好吻合,MEA吸收CO2化学反应增强因子随进气CO2浓度增加而降低,随MEA浓度增加而增加,随进气流率增加而减小。  相似文献   

12.
Among numerous techniques existing for reducing CO2 emissions, CO2 capture by absorption in aqueous alkanolamine solutions was specifically studied in this work. For the choice of the adequate amine solution, two major criteria must be taken into account: absorption performances (higher with primary and secondary amines) and energy costs for solvent regeneration (more interesting with tertiary and sterically hindered amines). The different types of amines can also be mixed in order to combine the specific advantages of each type of amines, an activation phenomenon being observed. Aqueous solutions of (piperazinyl‐1)‐2‐ethylamine (PZEA, a polyamine known as absorption activator) and 1‐amino‐2‐propanol (AMP, a sterically hindered amine), pure or mixed with other amines, are experimentally compared with respect to CO2 removal performances by means of absorption test runs achieved in a special gas‐liquid contactor at 25 °C. The positive impact of addition of PZEA to monoethanolamine (MEA), N‐methyldiethanolamine (MDEA), and AMP solutions was clearly highlighted. The absorption performances have also been satisfactorily simulated with coherent physicochemical data.  相似文献   

13.
The aim of this study was to characterize mass transfer and deodorization efficiency in a countercurrent spray tower for low superficial gas velocities. The influence of operating parameters (UG = 0.005 to 0.025 m s?1, UL = 6.1 × 10?5 to 2.4 × 10?4 m s?1) on the liquid retention (εL), the drop diameter (dg), the interfacial area (a) and the overall liquid and gas phase mass transfer coefficients (KLa, KGa) were estimated. The spray efficiency of some malodorous compounds was also estimated. A negative influence of the superficial gas velocity was demonstrated, during the spraying of water or chemical neutralizing scrubbing solutions. There was also an increase with the liquid flow rate. Abatements obtained were very good with respect to ammonia (>90%), and acceptable for the other compounds.  相似文献   

14.
Phase change absorbents for CO2 are of great interest because they are expected to greatly reduce the heat energy consumption during the regeneration process. Compared with other phase change absorbents, monoethanolamine (MEA)-sulfolane-water is inexpensive and has a fast absorption rate. It is one of the most promising solvents for large-scale industrial applications. Therefore, this study investigates the mass transfer performance of this phase change system in the process of CO2 absorption in a packed tower. By comparing the phase change absorbent and the ordinary absorbent, it is concluded that the use of MEA/sulfolane phase change absorbent has significantly improved mass transfer efficiency compared to a single MEA absorbent at the same concentration. In the 4 mol·L-1 MEA/5 mol·L-1 sulfolane system, the CO2 loading of the upper liquid phase after phase separation is almost zero, while the volume of the lower liquid phase sent to the desorption operation is about half of the total volume of the absorbent, which greatly reduces the energy consumption. This study also investigates the influence of operating parameters such as lean CO2 loading, gas and liquid flow rates, CO2 partial pressure, and temperature on the volumetric mass transfer coefficient (KGaV). The research shows that KGaV increases with increasing liquid flow rate and decreases with the increase of lean CO2 loading and CO2 partial pressure, while the inert gas flow rate and temperature have little effect on KGaV. In addition, based on the principle of phase change absorption, a predictive equation for the KGaV of MEA-sulfolane in the packed tower was established. The KGaV obtained from the experiment is consistent with the model prediction, and the absolute average deviation (AAD) is 7.8%.  相似文献   

15.
Carbon dioxide (CO2) mass transfer processes are analyzed in hybrid equipment which involves a zeolitic membrane and a physical or chemical solvent. This separation device was chosen because the membrane can be used to produce a stream of higher CO2 concentration to be treated by gas‐liquid absorption. The analysis of the mass transfer behavior of this gas through the solid phase is an important step before more complicated gas streams are applied. The combined use of both techniques can improve the global separation process because they allow performing a previous separation with a positive effect on the cost of the later separation operations. The influence of the liquid phase nature used in one chamber of the membrane contactor upon CO2 global mass transfer is analyzed. Also the effect caused by the absorption regime, liquid and gas flow rates, and the pressure corresponding to the gas chamber on CO2 mass transfer is studied to evaluate the importance of each variable.  相似文献   

16.
The mass transfer parameters of both gas and liquid phases affect the mass transfer flux of CO2 in absorption processes. In this study, an accurate correlation is proposed to calculate the CO2 mass transfer flux in an absorption-reactive process by methyldiethanolamine (MDEA) solution using the Buckingham π theorem. The various parameters include film parameter, CO2 loading, concentration ratio, partial-to-total pressure ratio, film thickness ratio, and diffusion ratio which are incorporated in the model. An average absolute relative error of 4.4 % for the calculation of mass transfer flux was stated.  相似文献   

17.
现代二氧化碳吸收工艺研究   总被引:4,自引:0,他引:4  
综述了现代二氧化碳吸收工艺研究进展,介绍了目前国内外现有的二氧化碳吸收方法,包括物理吸收法、膜吸收法、化学吸收法、离子液体法、电化学法和O2/CO2燃烧法,简要介绍了各种吸收方法的特点及所做研究,重点讨论了工业应用较广的化学吸收法,分析了离子液体法与其他有机溶剂比较的优缺点,并对新工艺方法进行了展望.  相似文献   

18.
A highly efficient technique of contaminant gas reduction, Turbulent Contact Absorber (TCA), is applied to CO2 removal from a typical flue gas. Aqueous K2CO3 sorbent was evaluated as a regenerable sorbent for CO2 from the flue gas. In order to identify the system, momentum and mass balance equations were written for the TCA tower. A flat plate falling film model was employed to simulate the TCA tower and the effect of turbulence was included in mass and momentum transfer coefficients. To check the accuracy of the model, a pilot scale TCA was built and operated. A Testo type gas analyzer was used to detect gas concentrations at the inlet and outlet of the rig. The model was validated successfully with pilot plant data. The effect of velocity and K2CO3 concentration on the TCA performance has also been carried out. It was found that the bed pressure drop increases linearly with gas velocity and then remains constant. An increase in the liquid flow rate increases liquid holdup, which leads to a rise in bed pressure drop. Higher turbulence within the TCA causes a velocity peak to shift from hypothetical gas‐liquid interface towards the falling film plate. An increase of the K2CO3 concentration from 1.0 g mol/L to 2.0 g mol/L was found to give an increase in CO2 removal by about 4 %.  相似文献   

19.
介绍了喷雾干燥塔在PVC树脂生产中产生黏壁的原因,并从喷雾干燥塔喷嘴的安装,操作风量以及温度等方面提出了改进方法,取得了良好的效果。  相似文献   

20.
烟气脱硫喷淋塔的数值模拟   总被引:1,自引:0,他引:1  
以计算流体力学为基础,在三维坐标系下采用标准k-ε双方程模型求解动量、能量和组分方程,结合浆滴蒸发模型及简化的浆滴脱硫反应模型,以Eu ler-Lagrange方法建立了喷淋塔内烟气脱硫的数值计算模型,模型计算结果与孔华的试验数据符合较好。模型计算结果表明,对于粒径小的喷淋液滴,其烟气脱硫反应和液滴蒸发主要发生在烟气进口附近,而随着液滴粒径的增大,液滴在塔内蒸发和脱硫反应的过程延长。同时,增加烟气温度、降低烟气中SO2的入口质量浓度以及增加液气比均有利于提高脱硫效率。文中模型相对于一维柱塞流模型,能够直观地显示出喷淋塔内的流场、温度场和组分质量浓度场的空间分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号