首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests, considering different steel indentation depths and concrete covers and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in two series of tests.  相似文献   

2.
The wide use of external prestressing system to strengthen reinforced and prestressed concrete members requires the full understanding of the behaviour of the strengthened members. At ultimate the stress in the external prestressing tendons need to be known in order to calculate the ultimate strength of the strengthened member. Several factors that can influence the increase in the ultimate stress in steel external prestressing tendons have been studied and well understood while the effect of these factors on tendons made from fibre reinforced plastics needs more research.

This research was carried out to study the effect of several factors on the increase in the ultimate stress in external Parafil ropes as well as external steel tendons. These factors were related to the external prestressing system, internal prestressed and ordinary bonded steel, beam geometry and material properties. Also, the accuracy of equations proposed by the Eurocode (EC2), ACI318 and BS8110 to calculate the ultimate stress in external steel and FRP prestressing tendons was examined.

The experimental and the analytical results showed that the studied factors have the same effect on both steel (up to yield) and Parafil ropes though this effect is greater in case of steel tendons. Also, factors such as tendon profile (straight or deviated), high strength of the concrete, effective tendon depth, number of deviators should be taken into consideration when calculating the ultimate stress in the external tendons.  相似文献   


3.
A batch of constitutive models for steel reinforcing bar, prestressing tendon, concrete and fiber-reinforced plastic are proposed for the nonlinear finite element analysis of reinforced concrete structures, prestressed concrete structures, reinforced concrete structures strengthened by fiber-reinforced plastics and prestressed concrete structures strengthened by fiber-reinforced plastics. These material models have been tested against series of experimental data and good agreements have been obtained, which justifies the validity and the usefulness of the proposed nonlinear constitutive models.  相似文献   

4.
A theory is proposed to determine the horizontal shear between the roughened interface of a composite precast member and in situ concrete. The proposed method is completely congruous with the alternative method listed in clause 17.5.3 of ACI 318-95. The horizontal shear is determined by calculating the change in the tension force across an elemental segment at the point maximum shear will occur. This approach differs from prevailing methods which base the horizontal shear as a function of the mid-span ultimate force. Equations are developed for both cracked and uncracked sections. Experiments were also performed to validate the proposed equations.  相似文献   

5.
On railway track structures, dynamic impact loads with very high magnitude but short duration are often caused by wheel or rail abnormalities such as flat wheels and dipped rails. The possibility of the large impact loading to cause an extreme failure to an in situ concrete sleeper could be very low about once or twice in the design life cycle. However, to the current knowledge, the behaviour of the in situ prestressed concrete sleepers under the ultimate impact loading has not yet been comprehended, resulting in the design deficiency. A high-capacity drop-weight impact testing machine was thus constructed at the University of Wollongong, in order to evaluate impulsive resistance of in situ prestressed concrete sleepers under impact loads. This paper describes the detail of the high-capacity impact testing machine, as well as the instrumentation, the calibration, and the analysis of failure mode, crack propagation, flexural toughness, and energy absorption mechanisms with respect to railway prestressed concrete sleepers. The impact tests were carried out using the prestressed concrete sleepers manufactured in Australia. An in situ track test bed was simulated in laboratory and calibrated against the frequency response functions obtained from the experimental modal analysis. The experiments using the high-capacity impact testing machine to investigate the impact energy transfer mechanism of the prestressed concrete sleepers are highlighted.  相似文献   

6.
由于预应力混凝土管桩是建筑工程中使用的一种十分重要的建筑材料,其产品质量涉及原材料、生产过程参数控制等诸多方面,根据对管桩常见质量问题的分析,提出质量控制的关键点。  相似文献   

7.
The successful development of self-consolidating concrete (SCC) requires a careful control of rheological properties of matrix. In this investigation, a parametric study was undertaken to evaluate the influence of binder type, w/cm (water-to-cementitious materials ratio), and coarse aggregate type and nominal size on rheology of prestressed SCC. The rheological measurement of the 33 SCC mixtures investigated in parametric study was performed using a modified Tattersall two-point workability rheometer. The yield stress and plastic viscosity values derived from the SCC mixtures were correlated to the various workability test results to identify combinations of rheological parameters necessary to secure adequate filling ability, filling capacity, and stability of SCC for successful casting of prestressed elements. Based on the results, it is recommended that SCC should have a plastic viscosity of 30–70 Pa s and 30–130 Pa s for concrete made with crushed aggregate and gravel, respectively, to ensure proper workability. Higher viscosity levels could lead to limitation in passing ability should be avoided. Better understanding of the rheological parameters that control the workability of SCC is important in developing mix design approaches and interpreting quality control test methods.  相似文献   

8.
针对地震作用下RC串联滚轴隔震结构受力特征和损伤特点,提出适用于串联滚轴隔震结构柱的新型连接节点。通过开展1/2缩尺拟动力试验,研究采用新型连接节点的滚轴隔震结构柱在不同强度地震作用下的抗震性能。构造适用于滚轴隔震结构的一致危险设计谱,根据结构位移限值要求对滚轴隔震支座进行设计,通过数值模拟验证滚轴隔震支座的减震效果;结合不同超越概率的一致危险设计谱,分别选择地震波对装配式滚轴隔震结构柱进行拟动力试验研究,分析不同强度地震作用下装配柱和现浇柱的破坏形态、滞回曲线、刚度退化、耗能等抗震性能指标。研究结果表明:在超越概率为10%时,通过对非隔震结构柱和滚轴隔震结构柱进行数值模拟,计算得到剪力比为0.5,且通过试验研究发现,在超越概率为2%时,装配式滚轴隔震结构柱损伤指数为0.279,滚轴隔震支座发挥了良好的减震效果,装配柱在罕遇地震作用下发生轻微损伤;在超越概率为2%时,现浇柱最大裂缝宽度发展至1.8 mm,装配柱最大裂缝宽度发展至1.6 mm;对比骨架曲线、刚度退化、累积滞回耗能发现,装配柱承载力、初始刚度和累积滞回耗能较现浇柱略好。  相似文献   

9.

该文在对一个含减震外挂墙板平面框架(简称减震结构)以及一个作为对比的纯框架(简称抗震结构)进行混合试验的基础上,进一步对其单跨2层试验子结构进行了拟静力试验,研究了两结构在水平地震作用下的受力过程、损伤模式及减震外挂墙板对主体结构抗震性能的影响。研究结果表明:减震结构和抗震结构的破坏机制均为梁端和柱底出现塑性铰的梁铰机制,减震外挂墙板未改变主体结构的破坏模式;减震结构中,在最大层间位移角达到1/55之前,消能器呈预期的履带式滚动变形,此后由于外挂墙板的面内转动变形,消能器水平剪切变形值增加不大,且圆弧段产生明显变形;试验过程中减震外挂墙板未出现裂缝;墙板与框架间上部线连接处裂缝宽度较小,连接钢筋应变也较小,表明连接可靠;两试件均具有较好的变形能力和耗能能力;在相同位移级别下,减震结构的刚度、极限承载力和耗能能力均更好。

  相似文献   

10.
Polymers in concrete: a vision for the 21st century   总被引:13,自引:0,他引:13  
Polymers in concrete have received considerable attention over the past 25 years. Polymer-impregnated concrete (PIC) was the first concrete polymer composite to receive widespread publicity. PIC has excellent strength and durability properties, but it has few commercial applications. Polymer concrete (PC) became well known in the 1970s and is used for repair, thin overlays for floors and bridges, and for precast components. Polymer-modified concrete (PMC) has been used primarily for repair and overlays. Several limitations have slowed the use of concrete polymer materials. However, there are many current and future uses for these materials that will effectively use their unique properties. Improved, automated repair methods, improvements in materials, replacements for metals, structural applications, and architectural components will prove to be popular uses of concrete-polymer materials.  相似文献   

11.
The application of ground granulated blast furnace slag (GGBFS) and steel fibers in prestressed concrete railway sleepers was investigated in this study. The use of GGBFS was considered as an eco-friendly material aimed at reducing CO2 emissions and energy consumption as well as to enhance the durability performance of railway sleepers. Steel fibers improves the durability and structural performance in terms of crack control and reduction of spalling and can replace shear reinforcement. The mix proportions of the concrete incorporating GGBFS (56% GGBFS) and GGBFS with steel fibers (56% GGBFS and 0.75% steel fibers) were determined through a series laboratory tests and a life cycle assessment. These mixes satisfied the requirements of the Korean Railway Standard and resulted in improved flexural capacity as well as less CO2 emissions compared with current railway sleepers. Using these mixes, a total of ninety prestressed concrete sleepers were produced in a factory under the same manufacturing process as current railway sleepers, and their mechanical properties as well as durability performance were evaluated. The mix with partial replacement of Type III Portland cement by GGBFS showed an improved resistance to chloride ion penetration and freeze-thaw cycles compared with the concrete used for current railway sleepers. However, these mixes were more vulnerable to carbonation. The mix with GGBFS and steel fibers (mix BSF) showed a slightly better durability performance than the mix with GGBFS only (mix BS), including better carbonation and freeze-thaw resistances. The mix BSF showed decreased chloride ion penetration depth than mix BS but showed a slightly higher chloride ion diffusion coefficient.  相似文献   

12.
This paper analyzes the behavior of the base of a precast column in the socket foundation with smooth interfaces. This research is motivated by the lack of information and guidelines on the behavior of column bases in the embedded region. An experimental program with two full-scale specimens was carried-out. These two specimens had smooth interfaces at the internal faces of the socket, different embedded lengths and were subjected to loads with large eccentricities. The experimental results showed that the failure of the specimens occurred by the yielding of the longitudinal reinforcement out of the embedded region, while the transverse reinforcement was not very stressed. Some recommendations on the anchorage of the longitudinal reinforcement and a strut-and-tie model for the behavior of column bases in the embedded region are proposed.  相似文献   

13.
夏婉秋  鲁亮  张会会  徐颖超 《工程力学》2020,38(S):172-179, 186
基于Pushover分析方法,研究了体外预应力自复位框架(External Prestressed Self-centering Frame, EPSCF)结构的抗震性能。采用ABAQUS软件建立了EPSCF结构有限元模型,并与振动台试验结果进行对比,验证了模型及建模方法的可靠性和准确性;采用Pushover分析方法评定EPSCF无控及受控结构的抗震性能并对比分析其地震响应。结果表明,设置层间阻尼器的EPSCF受控结构的等效阻尼比大幅度提升,阻尼器屈服耗能是结构的主要耗能形式,在罕遇地震作用下的结构加速度和位移响应得到了有效控制,EPSCF受控结构的抗震性能优异。  相似文献   

14.
预应力钢筒混凝土管(prestressed concrete cylinder pipe,PCCP)在水利工程、工业供水等领域得到广泛应用。针对现有PCCP端口打磨方法效率低、打磨质量难以保证等问题,创新设计了一种PCCP承、插口打磨机器人。首先,根据工作服役环境要求,对端口打磨机器人进行了结构设计与样机制作,并通过现场试验分析该机器人的打滑失效问题;其次,根据打磨机器人克服摩擦力环绕承、插口作周向转动的打磨过程,在进行力学分析基础上建立其压紧力模型及可靠性模型,并采用随机摄动方法分析了整个打磨过程的动态可靠度,得到该打磨机器人可靠性最低的关键部位;最后,对影响端口打磨机器人可靠性的参数进行了灵敏度分析,得出使端口打磨机器人最快趋向可靠的参数为从动轮半径。研究结果为研发具有自主知识产权的大型PCCP自动化制造装备及进行下一步可靠性优化设计奠定了基础。  相似文献   

15.
Influence of loading rate on concrete cone failure   总被引:2,自引:2,他引:2  
Three different effects control the influence of the loading rate on structural response: creep of bulk material, rate dependency of growing microcracks and structural inertia. The first effect is important only at extremely slow loading rates whereas the second and third effects dominate at higher loading rates. In the present paper, a rate sensitive model, which is based on the energy activation theory of bond rupture, and its implementation into the microplane model for concrete are discussed. It is first demonstrated that the model realistically predicts the influence of the loading rate on the uniaxial compressive behaviour of concrete. The rate sensitive microplane model is then applied in a 3D finite element analysis of the pull-out of headed stud anchors from a concrete block. In the study, the influence of the loading rate on the pull-out capacity and on the size effect is investigated. To investigate the importance of the rate of the growing microcracks and the influence of structural inertia, static and dynamic analyses were carried out. The results show that with an increase of the loading rate the pull-out resistance increases. For moderate loading rates, the rate of the microcrack growth controls the structural response and the results of static and dynamic analysis are similar. For very higher loading rates, however, the structural inertia dominates. The influence of structural inertia increases with the increase of the embedment depth. It is shown that for moderately high-loading rates the size effect becomes stronger when the loading rate increases. However, for very high-loading rate the size effect on the nominal pull-out strength vanishes and the nominal resistance increases with an increase of the embedment depth. This is due to the effect of structural inertia.  相似文献   

16.
Existing experimental studies showed that the reinforced concrete (RC) beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates had three possible flexural failure modes (including the compression failure, tension failure and debonding failure) according to the CFRP reinforcement ratio. Theoretical formulas based on the compatibility of strains and equilibrium of forces were presented to predict the nominal flexural strength of strengthened beams under the three failure modes, respectively, and a limitation on the tensile strain level developed in the prestressed CFRP plate was proposed as the debonding failure occurred. In addition, the calculation methods for cracking moment, crack width and deflection of strengthened beams were provided with taking into account the contribution of prestressed CFRP plates. Experimental studies on five RC beams strengthened with prestressed CFRP plates and a nonlinear finite element parametric analysis were carried out to verify the proposed theoretical formulas. The available test results conducted by other researchers were also compared with the predicted values.  相似文献   

17.
Strengthening of reinforced concrete (RC) members by means of fibre reinforced polymers (FRP) has gained increasing importance in the last few decades. On the other hand the necessity of skilled labour, high costs and particularly the weak response under high temperature conditions represent critical issues for the effective application of this technique. The use of fibre reinforced cementitious matrix (FRCM) composites applied to RC members seems to be a promising technique since it combines cost economy and high performance. Despite the fact that a number of experimental investigations on strengthening of RC elements by means of fibre reinforced polymers (FRP) composites are available in the literature, very little information is available about fibre reinforced cementitious matrix composite (FRCM). Hence, the use of cementitious composites in strengthening of RC structures is strongly limited by the lack of design models, guidelines, and recommendations and by the few available experimental investigations.This work aims to better understand the behaviour of FRCM strengthened RC full-scale elements through experimental tests on precast prestressed double-T beams. In addition to investigating the experimental behaviour of an innovative and promising strengthening system, a further element of novelty of the work is that the tested beams belong to an actual existing industrial building, since the few experimental tests available in the literature are mostly related to small-scale and cast-in-place RC elements.  相似文献   

18.
Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker–Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker–Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ? -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.  相似文献   

19.
Lattice modelling of size effect in concrete strength   总被引:1,自引:0,他引:1  
This paper uses a recently improved lattice network model to study the size effect in the strength of plain concrete structures. The several improvements made to the lattice network model are: (i) tension softening of the matrix phase is included in the material modelling; (ii) the structural response is modelled by incrementing the deformation rather than the load. This eliminates the need for introducing arbitrary scaling parameters in the beam element failure criteria and; (iii) a square rather than a triangular lattice beam network is found to be adequate for modelling concrete, thus greatly reducing the computational time.The improved square lattice network has been used to simulate the complete load-deformation response of notched three-point bend beams of different sizes with a view to checking the validity of several size effect models available in the literature. Lattice simulation was found to identify microcracking, crack branching, crack tortuosity and bridging, thus allowing the fracture process to be followed until complete failure. The improved lattice model predicted smooth structural response curves in excellent agreement with test results.The simulated nominal strengths also correlated very well with the test results, apart from that for the smallest beams (depth 38.1 mm). However, even in the relatively broad range of sizes (1:8) of the test beams, there was no clear evidence that one size effect model is superior to the other. In fact, rather surprisingly the test data would appear to be equally well described by all the available size effect models. The lattice simulations however indicated a trend which is better predicted by the multifractal scaling model.  相似文献   

20.
The apparent fracture energy of concrete experimentally determined on the basis of the work of fracture in bending or wedge splitting tests becomes larger with increasing specimen dimensions. This experimental observation may be attributed to the varying local fracture energy along the crack path. When the crack tip approaches the specimen boundary, the size of the fracture process zone will be reduced and, consequently, only a portion of the fracture energy is activated; i.e., the local fracture energy is getting smaller. The influence of this boundary effect diminishes with increasing specimen size resulting in the size dependence of the apparent fracture energy determined by the work-of-fracture method as an average value in the ligament. With varying local fracture energy, the local softening curve will also show variations. The latter are subject of the present study. Wedge splitting tests with different specimen sizes as well as inverse analyses of these experiments were carried out. For the inverse analyses, the cohesive crack model was adopted and an evolutionary optimization algorithm has been used. The boundary effect on the local fracture properties was taken into account and, as a result, the variation of the softening curve along the crack path could be determined. It was found that the tail of the softening curve is shortened and lowered due to the boundary effect whereas the initial slope of this curve appears to be not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号