首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A powder X-ray diffraction investigation of the new ternary compounds Zr6CoAs2-type R6MnSb2 and R6MnBi2 (R=Y, Lu, Dy, Ho) is reported. The compounds Ho6MnSb2 (a=0.8070(2) nm, c=0.4230(1) nm), Lu6MnSb2 (a=0.7930(1) nm, c=0.4173(1) nm), Y6MnBi2 (a=0.8242(1) nm, c=0.4292(1) nm), Dy6MnBi2 (a=0.8211(1) nm, c=0.4286(1) nm), Ho6MnBi2 (a=0.8164(1) nm, c=0.4250(1) nm) and Lu6MnBi2 (a=0.8019(2) nm, c=0.4185(1) nm) crystallize in the hexagonal Zr6CoAs2-type structure (space group P6b2m No. 189). The Zr6CoAs2-type structure is a superstructure of the Fe2P-type structure.  相似文献   

2.
A series of isotypic RE1.9Cu9.2Sn2.8 compounds, where RE are Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, was synthesized by arc-melting and the crystal structure was determined by X-ray powder diffraction. The structure is a partly disordered substitution variant of the CeNi5Sn structure type (space group P63/mmc), which consists of CaCu5-type fragments of composition RE0.9Cu4.2Sn0.8 and fragments of a hypothetical structure of composition RECu5Sn2. All the RE1.9Cu9.2Sn2.8 compounds obtained here are paramagnets and characterized by metal-like conductivity.  相似文献   

3.
Powder X-ray and neutron diffraction and magnetic measurements have been performed on R2RhSi3 (R=Ho and Er) compounds at low temperatures. The compounds crystallize in a derivative of the hexagonal AlB2-type structure. The crystal structure parameters have been refined on the basis of the X-ray and neutron diffraction patterns collected in the paramagnetic region. These compounds are antiferromagnets with Néel temperatures of 5.2 K for Ho2RhSi3 and 5 K for Er2RhSi3. Both compounds exhibit collinear magnetic structures, described by the propagation vector k=(1/2,0,0) for Ho2RhSi3 and k=(0,0,0) for Er2RhSi3. This magnetic order is stable in the temperature range between 1.5 K and the Néel temperature.  相似文献   

4.
Features of the conventional hydrogenation, disproportionation, desorption, recombination (HDDR) and solid-HDDR processes in some R–Fe–B (R is a mixture of Nd, Pr, Ce, La, Dy) ferromagnetic alloys were studied in the temperature range 20–990 °C and pressure range from 1×10−3 Pa to 0.1 MPa. This was carried out by means of differential thermal analysis (DTA), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) methods. The hydride of the initial phase is formed by heating to 115 °C. The disproportionation of the alloys occurs in the temperature range from 320 to 800 °C. Φ-phase constitutes the base of the initial alloys. Among the disproportionation products, R-hydride, -Fe and two borides (Fe2B and R1.1Fe4B4) were revealed. The initial phase in all the alloys is recovered after heating in vacuum to a temperature of 990 °C. Full hydrogen desorption occurs in two temperature ranges with the peaks at 200–320 and 630–715 °C.  相似文献   

5.
New ternary indides R10Co9In20 (R=Er, Tm, Lu) have been found in the systems {Er, Tm, Lu}–Co–In at 870 K. The crystal structure of Tm10Co9In20 has been refined using single-crystal X-ray data: Ho10Ni9In20 structure type, P4/nmm space group, Z=2, a=13.166(5) Å, c=9.097(4) Å, V=1577(2) Å3, R=0.0315 for 335 unique reflections hkl (DARTCH-1 diffractometer, MoKα radiation). The coordination polyhedra of the Tm atoms have 16 and 17 vertices, those of the In atoms 12 and 13 vertices and those of the Co atoms 8 and 10 vertices. The structure can be described as a stacking of polyhedra formed by In atoms.  相似文献   

6.
The compounds RMn2Ge2 (R = Tb, Ho, Er, Tm, Lu) have been investigated by neutron diffraction. TbMn2Ge2 is a collinear ferrimagnet with the Mn and Tb moment aligned along the c axis (μTB = 8.81(59) μB: μMn = 2.21(44) μB). HoMn2Ge2 exhibits incommensurale ordering below 2.1 K characterized by two wavevectors at 1.3 K: q1 = (0.1543(4), 0.1543(4), 0) and q2 = (0.210(1), 0.007(1), 0). The Mn sublattice remains antiferromagnetic down to 1.3 K (μMn = 2.38(6) μB). The Er moments order ferromagnetically below 5.5 K in ErMn2Ge2Mn = 6.81(31) μB). The moments are perpendicular to the c axis. The Mn sublattice remains antiferromagnetic down to 1.8 K (μMn = 2.34(18) μB). The magnetic structure of TmMn2Ge2 is characterized by the propagation vector (0.0.1/2). the Tm moments lying in the basal plane. The ordering of the Tm moments yields a canting of the Mn moments (τ = 21(3)°); μTm = 6.63(18) μB; μMn = 2.28(27) μB). The antiferromagnetic structure of LuMn2Ge2 has been determined (μMn = 2.32(14) μB). The evolution of the magnetic properties of the heavy rare earth compounds RMn2Ge2 is discussed.  相似文献   

7.
The crystal structure of new ternary R3Si1.25Se7 (R = Pr, Nd and Sm) compounds (Dy3Ge1.25S7 structure type, Pearson symbol hP22.5, space group P63, a = 1.05268 (3) nm, c = 0.60396 (3) nm, RI = 0.0897 for Pr3Si1.25Se7; a = 1.04760 (3) nm, c = 0.60268 (3) nm, RI = 0.0891 for Nd3Si1.25Se7; a = 1.04166 (6) nm, c = 0.59828 (6) nm for Sm3Si1.25Se7) was determined using X-ray powder diffraction. The nearest neighbours of the R and Si atoms are exclusively Se atoms. The latter form distorted trigonal prisms around the R atoms, octahedra around the Si1 atoms and tetrahedra around the Si2 atoms. Tetrahedral surrounding exists for Se1 and Se3 atoms. Six neighbours surround every Se2 atom.  相似文献   

8.
Structural studies were performed for the ternary RIr3B2 compounds (R=Ce and Pr) from as cast samples. The crystal structure of the ternary boride CeIr3B2 (CeCo3B2 structure type, space group P6/mmm, a=5.520(3) Å, c=3.066(2) Å, Z=1, V=80.91 Å3, ρx=15.154 g cm−3) was refined to R1=0.0470, wR2=0.1240 from single-crystal X-ray diffraction data. The new ternary boride PrIr3B2 was found to be isostructural with the CeIr3B2 compound. Its lattice parameters a=5.5105(2) Å, c=3.1031(1) Å were obtained from a Rietveld refinement of X-ray powder diffraction data.  相似文献   

9.
The crystal structure of binary germanides R3Ge4 (R Er, Ho, Tm, Lu) has been determined by means of powder X-ray diffraction. For Er3Ge4 a full-structure determination has been performed using the Rietveld method (306 reflections, space group Cmcm,

). The location of the atoms in Er3Ge4 is similar to that in the W3CoB3 structure, with the Ge atoms substituting for Co and B. For the other R3Ge4 compounds (RHo, Tm and Lu) the lattice parameters are given.  相似文献   

10.
The atomic structure of a new ternary phase UFe2Al10 appearing in the U–Fe–Al system was determined using direct methods applied to X-ray powder diffraction data. High resolution electron microscopy combined with the methods of crystallographic image processing was used for the verification of the structural model. The UFe2Al10 phase is orthorhombic and belongs to Cmcm space group, its unit cell contains 40 Al, eight Fe, and four U atoms. The lattice parameters obtained after Rietveld refinement are: a=8.919 Å, b=10.208 Å, and c=9.018 Å. The reliability factors characterizing the Rietveld refinement procedure are: Rp=5.9%, Rwp=8.1%, and Rb=2.9%.  相似文献   

11.
We present structural and magnetic data on ZnV2O4 single crystals. Single crystal X-ray diffraction shows the measured crystals to be of very high quality, especially with respect to atomic order. The measured magnetic susceptibility resembles to that of a spin glass system, surprising for a translational invariant structure. The results are discussed in the framework of disorder in a magnetically frustrated lattice.  相似文献   

12.
The crystal structure of the R3Ag1−δSiS7 (R = La, Ce, Pr, Nd, Sm, δ = 0.10–0.23, space group P63, Pearson symbol hP23.80 − 23.54) compounds were determined by means of X-ray single crystal diffraction (a = 1.04168(8) nm, c = 0.57825(4) nm, R1 = 0.0116 for La3Ag0.90SiS7; a = 1.0312(1) nm, c = 0.57395(7) nm, R1 = 0.0152 for Ce3Ag0.82SiS7; a = 1.0248(1) nm, c = 0.57223(5) nm, R1 = 0.0105 for Pr3Ag0.85SiS7; a = 1.0192(1) nm, c = 0.57020(6) nm, R1 = 0.0292 for Nd3Ag0.81SiS7, a = 1.0100(1) nm, c = 0.56643(6) nm, R1 = 0.0208 for Sm3Ag0.77SiS7. Gradual decrease of the silver amount in the series of chalcogenides was found.  相似文献   

13.
Powder X-ray diffraction results and macroscopic magnetic properties of new ternary RRh5Ge3 compounds (R=Sm, Gd, Tb) are reported. The compounds SmRh5Ge3 (a=2.2744(4) nm, c=0.3888(1) nm), GdRh5Ge3 (a=2.2711(5) nm, c=0.3872(1) nm) and TbRh5Ge3 (a=2.2628(7) nm, c=0.3851(1) nm) crystallize in the hexagonal SmRh5Ge3-type structure (space group P63/m; No. 176). The GdRh5Ge3 and TbRh5Ge3 compounds are Curie–Weiss paramagnets down to 5 K.  相似文献   

14.
The crystal structure of a new series of ternary rare-earth platinum borides RPt3B (R=La, Pr, Nd) has been studied by X-ray powder diffraction analyses from the ‘as-cast’ alloys. The tetragonal CePt3B structure type, space group P4mm (No. 99), has been confirmed for all compounds. Rietveld refinements for the two compounds, PrPt3B and NdPt3B, were performed. LaPt3B is a temperature-independent Pauli-type paramagnet from room temperature down to 4 K. PrPt3B orders antiferromagnetically at TN=15 K followed by a ferromagnetic spin flip at TC=5 K, whereas NdPt3B exhibits an antiferromagnetic spin alignment at a Néel temperature TN=7 K. The temperature dependence of the electrical resistivity, ρ(T), reflects the metallic character of these compounds. Furthermore the characteristic changes of slope of ρ(T) plots prove the magnetic transitions.  相似文献   

15.
The synthesis of the new compounds RMgSn (R = La-Nd, Sm, Gd-Tm, Lu and Y) has been recently reported. The compounds formed by La and Ce crystallise in the TiNiSi structure type (oP12, Pnma), while from Nd they adopt the CeScSi-type (tI12, I4/mmm); PrMgSn is dimorphic: its high-temperature form (HT) is TiNiSi-type while the low-temperature one (LT) is CeScSi-type.In this paper we now report the results of a neutron diffraction investigation which has been performed in order to refine the crystal as well as the magnetic structures for the RMgSn compounds with R = Ce, Pr, Nd and Tb. All these compounds see at low temperature the establishment of long range magnetic ordering with a predominantly antiferromagnetic interaction; only PrMgSn-HT orders ferromagnetically. These results agree with those from magnetic measurements recently reported.The magnetic structure of CeMgSn is of the amplitude-modulated type, the value of the magnetic propagation vector refined at 2 K is τ = [0, 0.1886(4), 0.3384(8)]. The PrMgSn-HT phase below T = 52 K adopts first a purely ferromagnetic structure, then at about T = 15 K a second magnetic coupling leads to a spin-canted magnetic structure. Both PrMgSn-LT and NdMgSn have the same antiferromagnetic commensurate magnetic structure. The TbMgSn compound below TN = 35 K orders antiferromagnetically with an equal moment cycloidal structure; however a second magnetic transition at a temperature corresponding to TN2 = 65 K is likely also present.  相似文献   

16.
A new ternary compound Al0.32ErGe2 has been synthesized and studied from 298 K to 773 K using X-ray powder diffraction technique. Its structure has been determined at room temperature by Rietveld refinement of X-ray powder diffraction data. The ternary compound Al0.32ErGe2 crystallizes in the orthorhombic with the defect CeNiSi2 structure type (space group Cmcm, a = 0.40701(2) nm, b = 1.60401(9) nm, c = 0.39240(2) nm, Z = 4 and Dcalc = 8.326 g/cm3). The average thermal expansion coefficients , and of Al0.32ErGe2 are 1.72 × 10−5 K−1, 1.11 × 10−5 K−1 and 1.52 × 10−5 K−1, respectively. The bulk thermal expansion coefficient is 4.35 × 10−5 K−1. Electrical resistivity of Al0.32ErGe2 was measured between 5 K and 300 K.  相似文献   

17.
The crystal structures of the Ag4HgGe2S7 and Ag4CdGe2S7 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.74546(8), b=0.68093(2), c=1.05342(3) nm, β=93.398(3)° for Ag4HgGe2S7 and a=1.74364(8), b=0.68334(3), c=1.05350(4) nm, β=93.589(3)° for Ag4CdGe2S7. Atomic parameters were refined in the isotropic approximation (RI=0.0761 and RI=0.0727, respectively).  相似文献   

18.
A new series of R2PdIn8 intermetallics, where R = Pr, Nd, and Sm, was prepared by arc-melting the constituents under argon atmosphere and studied by means of X-ray diffraction and magnetic measurements. The compounds crystallize with a tetragonal structure of the Ho2CoGa8 type (space group P4/mmm). At very low temperatures, they order antiferromagnetically, and the Nd-based indide presumably exhibits an additional magnetic phase transition in the ordered region.  相似文献   

19.
The crystal structure of the monoclinic phase η-Al11Cr2 of the space group C2/c, a ≈ 1.76 nm, b ≈ 3.05 nm, c ≈ 1.76 nm, β ≈ 90° [L.A. Bendersky, R.S. Roth, J.T. Ramon, D. Shechtman, Metall. Trans. A 22A (1991) 5] has been determined by single-crystal X-ray diffraction. The structure model, refined to a final R value of 0.0441, has the composition of Al83.8Cr16.2. a = 1.77348(10) nm, b = 3.04555(17) nm, c = 1.77344(10) nm, monoclinic angle β = 91.0520(12)°. There are 80 (66Al + 14Cr) independent atomic positions in a unit cell, of which all Cr atom sites and 8 Al atom sites have icosahedral coordination. These icosahedra are interconnected forming icosahedral chains along , (1 0 1) icosahedral layer blocks as well as a three-dimensional icosahedral structure.  相似文献   

20.
The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV6Sn6 (SmMn6Sn6-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn6Sn6-type were also found with Dy, Ho, Tm, and Lu, while YV6Sn6 compound crystallizes in HfFe6Ge6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号