首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang CC  Kei CC  Yu YW  Perng TP 《Nano letters》2007,7(6):1566-1569
Alumina nanotubes were fabricated by a template method. Tris-(8-hydroxyquinoline) gallium (GaQ3) organic nanowires were used as a soft template for coating with alumina using an atomic layer deposition technique. The deposition was conducted at 25 degrees C by using trimethylaluminum and distilled water as the precursors of Al2O3. Amorphous alumina nanotubes were obtained after removing the GaQ3 by dissolving in toluene or by heat treatment at 350 degrees C. The amorphous nanotubes could be crystallized by heating at 900 degrees C for 1 h in vacuum.  相似文献   

2.
In this paper, a method is presented to create and characterize mechanically robust, free-standing, ultrathin, oxide films with controlled, nanometer-scale thickness using atomic layer deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 ± 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes, and flexible electronics.  相似文献   

3.
In the present work we report on the monocrystalline growth of (00.1) ZnO films on GaN template by the Atomic Layer Deposition technique. The ZnO films were obtained at temperature of 300 °C using dietylzinc (DEZn) as a zinc precursor and deionized water as an oxygen precursor. High resolution X-ray diffraction analysis proves that ZnO layers are monocrystalline with rocking curve FWHM of the 00.2 peak equals to 0.07°. Low temperature photoluminescence shows a sharp and bright excitonic line with FWHM of 13 meV.  相似文献   

4.
Kim WH  Park SJ  Son JY  Kim H 《Nanotechnology》2008,19(4):045302
We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100?nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.  相似文献   

5.
The interference colors resulting from thin films of Al2O3 deposited by atomic layer deposition (ALD) on silicon have been rigorously analyzed using a recently developed robotic gonioreflectometer. A series of eleven increasingly thick films was deposited, up to 1613 Å, and their reflectance values obtained for the visible spectrum. A comparison of these values with the predictions of computer simulations employing Fresnel equations has revealed that while there was generally good agreement between predicted and measured spectra, there are some spectral regions that exhibit large deviations from predicted reflectances, typically at near-normal measurement angles and shorter wavelengths. The effect of these discrepancies on color appearance was investigated in the CIE L*a*b* color space for the daylight illuminant D65. Large iridescence is both predicted and measured for most film thicknesses. Chroma and hue differences as large as 20 CIELAB units between the predicted and the measured color centers were obtained. Simulation also predicts larger iridescence than what is actually measured. A likely cause for the observed discrepancies is that the dielectric constants of the ALD films deviate from the literature values for the bulk material.  相似文献   

6.
Thin tantalum oxide films were deposited using atomic layer deposition from TaCl5 and H2O at temperatures in the range 80–500 °C. The films deposited at temperatures below 300 °C were predominantly amorphous, whereas those grown at higher temperatures were polycrystalline containing the phases TaO2 and Ta2O5. The oxygen to tantalum mass concentration ratio corresponded to that of TaO2 at all growth temperatures. The optical band gap was close to 4.2 eV for amorphous films and ranged from 3.9 to 4.5 eV for polycrystalline films. The refractive index measured at λ = 550 nm increased from 1.97 to 2.20 with an increase in growth temperature from 80 to 300 °C. The films deposited at 80 °C showed low absorption with absorption coefficients of less than 100 cm−1 in the visible region.  相似文献   

7.
Zinc oxide thin films have been deposited at high growth rates (up to ~1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 °C. The electrical, structural (crystallinity and morphology), and optical properties of the films have been analyzed by using Hall, four-point probe, X-ray diffraction, scanning electron microscopy, spectrophotometry, and photoluminescence, respectively. All the films have c-axis (100) preferential orientation, good crystalline quality and high transparency (~ 85%) in the visible range. By varying the DEZ partial pressure, the electrical properties of ZnO can be controlled, ranging from heavily n-type conductive (with 4 mOhm.cm resistivity for 250 nm thickness) to insulating. Combining the high deposition rates with a precise control of functional properties (i.e., conductivity and transparency) of the films, the industrially scalable spatial ALD technique can become a disruptive manufacturing method for the ZnO-based industry.  相似文献   

8.
F Li  X Yao  Z Wang  W Xing  W Jin  J Huang  Y Wang 《Nano letters》2012,12(9):5033-5038
Mesoporous metal oxide networks composed of interconnected nanotubes with ultrathin tube walls down to 3 nm and high porosity up to 90% were fabricated by atomic layer deposition (ALD) of alumina or titania onto templates of swelling-induced porous block copolymers. The nanotube networks possessed dual sets of interconnected pores separated by the tube wall whose thickness could be finely tuned by altering ALD cycles. Because of the excellent pore interconnectivity and high porosity, the alumina nanotube networks showed superior humidity-sensing performances.  相似文献   

9.
The reduction of various metallic oxides was examined. Atomic hydrogen generated on a heated tungsten catalyzer was used for reduction. It was found that Cu, Ru, Nb, Mo, Rh, Pd, Ir and Pt oxides can be reduced by irradiation with atomic hydrogen. The activation energy for oxide removal was examined and it was found that the values were very small, 10− 2 to 10− 4 eV.  相似文献   

10.
11.
A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.  相似文献   

12.
We investigated the aluminum distribution in aluminum-doped zinc oxide films grown by atomic layer deposition. Surface morphology, structure, composition and electrical properties of obtained films were studied. For the aluminum content less than 2 at.%, a periodicity of Al distribution along the layer depth was observed. This periodicity diminished significantly after annealing the samples in nitrogen atmosphere at 300 °C. For the Al content higher than 2 at.%, its distribution in ZnO:Al films was uniform within the depth measurement accuracy of ∼5-10 nm.  相似文献   

13.
14.
Needles of manganese (IV) oxide in the nanometer range have been synthesised using the atomic layer deposition technique. Traditionally the atomic layer deposition technique is used for the fabrication of thin films, however, we find that needles of beta-MnO2 are formed when manganese (IV) oxide is deposited as relatively thick (ca. 800 nm) thin films on substrates of alpha-Al2O3 [(001) and (012) oriented]. There is no formation of needles when the film is deposited on substrates such as Si(100) or soda lime glass. The film is formed using Mn(thd)3 (Hthd = 2,2,6,6-tetramethylheptane-3,5-dione) and ozone as precursors. While thin films (ca. 100 nm) consist of epsilon'-MnO2, the same process applied to thicker films results in the formation of nano-needles of beta-MnO2. These needles of beta-MnO2 have dimensions ranging from approximately 1.5 microm at the base down to very sharp tips. The nano-needles and the bulk of the films have been analysed by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy.  相似文献   

15.
Ti-Zn mixed oxide thin films, with thickness less than 50 nm, were grown with atomic layer deposition (ALD) technique at low temperature (90 °C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600 °C, revealing an increase in resistivity with Ti content.  相似文献   

16.
17.
We obtained zinc oxide films doped with aluminum using atomic layer deposition (ALD). Their morphology, growth mode, optical and electrical properties are studied. Al content dependence is analyzed. Carrier scattering mechanisms in ZnO:Al (AZO) films are investigated from conductivity versus temperature measurements. We also discuss how the film thickness affects its resistivity and optical transmission. The obtained film resistivities, i.e. 7 × 10?4 ??cm, belong to the lowest reported so far for transparent ZnO:Al films grown by the ALD method.  相似文献   

18.
This paper is a short review about the principle, preparation, and applications of ultra-thin oxide films prepared by molecular layer deposition (MLD). Porous oxide films, with well-defined porous structures and precisely controlled thicknesses down to several angstroms, can be prepared from dense organic/inorganic hybrid polymer films grown by MLD. The organic constituents in the film can be removed either by calcination at elevated temperatures or mild water etching at room temperature. Because of the layer-by-layer growth process for MLD, the deposited polymer films have regular structures and the removal of organic components from MLD polymer films produces uniform interconnected highly porous structures with a high surface area. For example, porous aluminum oxide films prepared by such a method have both micropores and mesopores with a BET surface area as high as 1250 m2/g. Examples of the versatility of the technique for fabrication of novel functional materials for various applications are discussed, including thermally stable, highly selective metal nanoparticle catalysts, defect-free inorganic membranes for gas separation, and photocatalytic layers prepared from titanium alkoxide MLD films.  相似文献   

19.
Atomistic mechanism for the nitrogen-doped ZnO Atomic Layer Deposition (ALD) on Si(100)-2 × 1 surface is investigated within the framework of density functional theory. We have examined three possible reaction pathways involving the metal precursors diethyl Zinc and ammonia hydride (NH4OH), which serves as oxidizer and nitrogen doping source. The dissociation of NH4OH leads to NH3 and H2O for latter parallel half reactions occurring simultaneously following the diethyl Zinc half reaction. Our results show overall three reactions are exothermic and energetically favorable, however, the adsorption energy in diethyl Zinc half reaction is only − 6.53 kJ/mol, which is much lower compared to NH3 and H2O half reactions, indicating longer zinc precursor pulsing time is indeed needed in order to attain better -ZnCH2CH3? group coverage. The energy barrier in NH3 and H2O half reactions are 142.00 and 94.16 kJ/mol respectively, combining with the calculation results that the exothermic energy of the H2O half reaction is 39.04 kJ/mol higher than the NH3 half reaction, we concluded that in the initial ALD zinc oxide procedure the ZnO deposition rate is much faster than the incorporation of nitrogen, which is in accordance with the function of nitrogen as p-type impurities in ZnO semiconductor.  相似文献   

20.
Conformity and phase structure of atomic layer deposited TiO2 thin films grown on silicon substrates were studied. The films were grown using TiCl4 and Ti(OC2H5)4 as titanium precursors in the temperature range from 125 to 500 °C. In all cases perfect conformal growth was achieved on patterned substrates with elliptical holes of 7.5 μm depth and aspect ratio of about 1:40. Conformal growth was achieved with process parameters similar to those optimized for the growth on planar wafers. The dominant crystalline phase in the as-grown films was anatase, with some contribution from rutile at relatively higher temperatures. Annealing in the oxygen ambient resulted in (re)crystallization whereas the effect of annealing depended markedly on the precursors used in the deposition process. Compared to films grown from TiCl4, the films grown from Ti(OC2H5)4 were transformed into rutile in somewhat greater extent, whereas in terms of step coverage the films grown from Ti(OC2H5)4 remained somewhat inferior compared to the films grown from TiCl4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号