首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon fiber surfaces were treated by cold plasmas of oxygen, nitrogen, argon, ammonia, and propylene. A two-component bismaleimide, an epoxy, and a model thermoplastic resin polypropylene were used as the matrices for composites. The effectiveness of various plasmas in improving the interfacial adhesion between carbon fibers and matrix resins was demonstrated. Predominant adhesion promotion mechanisms as influenced by various plasma treatments were determined. Oxygen and argon plasmas were found to promote mechanical keying by increasing the level of fiber surface roughness and porosity. The wettability of carbon fiber surface by the matrix resin was also enhanced by oxygen plasmas and argon plasmas (to a lesser extent), as evidenced by the increased total surface energies and their polar components. These surface energy increases are mainly due to the various oxygen-containing functional groups observed on the oxygen plasma-treated surface. For the cases of ammonia and combined ammonia/argon plasma treatments, possible chemical bonding between bismaleimide and the plasma-deposited amine groups is one important promoter of interfacial bonding. In these cases increased wettability was also observed. Ammonia and ammonia/argon plasmas appear to be the more appropriate treatments for carbon-fiber/thermoset resin composites considering that they generally do not induce any appreciable reduction in fiber strength. In contrast, excessively prolonged exposure of carbon fibers to oxygen, nitrogen or argon plasma could lead to a significant reduction in fiber strength. The plasma-polymerized polypropylene deposited on the fiber surface was capable of improving the compatibility and adhesion between the fiber and the polypropylene matrix.  相似文献   

2.
Pyrolytic graphite (PG) surfaces have been oxidized by electrochemical and oxygen plasma treatment. The oxidized PG surfaces have been studied by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared attenuated total reflection spectroscopy (FT-IR-ATR). Oxidation caused by the plasma treatment results in a small increment of the oxygen: carbon (O/C) ratio, compared to electrochemical treatment. Moreover, the increment of the O/C ratio for the plasma treated edge surface is smaller than that for the plasma treated basal surface. A steep gradient in oxygen concentration exists within the edge subsurface of PG for samples subjected to severe electrochemical treatment, as compared to those samples subjected to plasma treatment. For the electrochemical treatment, carbonyl, carboxyl, ester and lactone groups are introduced to the edge surface following relatively severe treatment. The ratio of ester and lactone groups to carboxyl groups increases with the extent of electrochemical treatment. For plasma treated samples, other types of oxygen-containing groups, which are probably keto-enol groups, are added to the edge surface, unlike during electrochemical treatment.  相似文献   

3.
Sulfonic and carboxyl groups can effectively improve the blood compatibility of polyurethane. But it is difficult to obtain an optimum ratio of the two groups. In this article, polyurethane (PU) was dissolved with acrylic acid in a tetrahydrofuran solution and then spread on the glass plate to produce a film. At the same time, acrylic acid partly polymerized and immobilized with the PU films. The films (PU-AA) were exposed to sulfur dioxide plasma to graft sulfonic acid group on its surfaces. Through adjusting the quantity of acrylic acid and the plasma reaction condition, the antithrombin of polyurethane can be improved. The surface-modified PUs were characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscope (XPS) and a contact angle goniometer. The blood compatibility of the films was examined by using thrombin time (TT), activated partial thromboplastin time (APTT) and prothrombin time (PT). The TT and APTT were significantly prolonged for the surface-modified films of PU-AA by sulfur dioxide plasma and only APTT was elongated for PU-AA. The results suggest that sulfonic acid and acrylic acid have the different effect on the blood compatibility of surface-modified PUs.  相似文献   

4.
In vitro blood compatibility of poly (hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) was evaluated in comparison with poly (L-lactic acid) (PLLA) by a haemolysis assay, in vitro platelet adhesion test and coagulation measurements including plasma recalcification time (PRT), plasma prothrombin time (PT) and kinetic clotting time. The results showed that PHBHHx exhibited better blood compatibility than PLLA. Furthermore, PHBHHx film was modified by NaOH treatment to improve the surface hydrophilic property and the influence of the surface modification on the blood compatibility was investigated. Surface properties including hydrophilic property, surface appearance and functional groups were characterized by water contact angle measurement, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the hydrophilic property of PHBHHx film was obviously improved by the NaOH treatment. It was also shown that the NaOH treatment could significantly enhance the blood compatibility of PHBHHx by prolonging PRT, PT, and kinetic clotting time and decreasing platelet activation. It is thought that the improvement in the hydrophilic property mainly contributes to the enhancement of blood compatibility.  相似文献   

5.
胡珂  刘涛  刘诗卉  陈俊英  黄楠 《功能材料》2012,43(19):2685-2688,2693
通过将多聚赖氨酸(PLL)-肝素纳米颗粒固定在多巴胺涂覆的钛表面,以改善其血液相容性。利用zeta电位仪及甲苯胺蓝法检测纳米颗粒的粒径及成分,通过傅立叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)及水接触角等对颗粒固定前后表面理化性质的变化进行表征。通过体外血小板粘附实验、肝素释放及活化部分凝血活酶时间(APTT)检测对改性样品的血液相容性进行评价。结果表明,PLL-肝素纳米颗粒成功固定在多巴胺沉积的钛表面,纳米颗粒的固定有效降低钛材料表面血小板的粘附行为,大大提高了血液相容性。  相似文献   

6.
Abstract

Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.  相似文献   

7.
The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 °C. N2/-196 °C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO3/H2O2. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces.  相似文献   

8.
A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics.  相似文献   

9.
利用2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)与316L不锈钢表面上γ-氨基丙基三乙氧基硅烷(KH550)的Michael加成反应,将MPC化学接枝到不锈钢的表面.修饰表面的XPS结果证实了MPC的成功接枝,表明在不锈钢表面构建了仿细胞膜表面.体外血小板粘附实验显示,修饰表面具有明显阻抗血小板的粘附、聚集和激活性能,并具有良好的血液相容性.  相似文献   

10.
The aim of this paper was to study the effect of nitrogen content on blood compatibility including platelet adhesion and kinetic clotting time of nickel-free high nitrogen stainless steel (HNS), also in comparison with a conventional austenitic stainless steel AISI 317L. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition. The surface wettability and surface free energy (SFE) of these materials were characterized by water contact angle (WCA) measurement to analysis the relationship between surface properties and blood compatibility. Kinetic clotting time was used to evaluate the blood coagulation for these materials and platelet adhesion was assessed by scanning electron microscopy (SEM). The results showed that more platelets adhered on the surface of 317L stainless steel than that on HNS, and with the increase of nitrogen content, the amount of adherent platelets was further decreased on the surface of HNS. Kinetic clotting time results also showed the increased nitrogen content extended the initial clotting time of HNS. The results of surface properties also explained the effect of nitrogen on blood compatibility by traditional theory of SFE and interfacial energy.  相似文献   

11.
Synthetic materials considered for biohybrid skin or other tissue engineering applications have to support cellular interaction and colonisation of implants. However, despite the number of studies reported in the literature, there is no agreement on the principal factors applicable to modulate the interaction with cells, such as the wettability of biomaterials, their surface potential and chemistry of the surface. Particularly, in this study we were interested on the impact of surface chemistry and net surface (zeta) potential on dermal fibroblasts. To address this question self assembled monolayers of silanes on glass, further derivatized with different functional groups, were used to study the adhesion and proliferation of human skin fibroblasts in response to these factors. The model surfaces were characterized using streaming potential (zeta potential) and water contact angle measurements. All samples were found to be negatively charged at physiological pH (regardless of the different chemistry) increasing (or equal ~) the magnitude of the negative potential in the following order: hydroxy (OH) < amine (NH2) ~ epoxy (EPOXY) < carboxyl (COOH) < three‐fluorocarbon (CF3) < sulfonic (SO3) functionalities. The interaction of fibroblast characterized by the effectiveness of cell adhesion, spreading and actin stress fibres formation decreased almost in the opposite order: NH2 > OH > EPOXY > SO3 > COOH > CF3 functions. The surfaces were found also to be highly wettable, except CF3. Interestingly, the best cellular interaction was found on the moderately wettable NH2 surface representing water contact angle (CA) of 65°, and the worst, on the least wettable CF3 surface (CA 85°) indicating that not only the surface potential but also the type of functional groups may play an important role. The organisation of α5 and β3 integrins generally followed the same trend of less clustering in focal adhesion plaques when the negative potential increased, except on SO3 surface, where β3 but not α5 integrins were greatly expressed. Cell growth however, showed a significant decrease on highly charged COOH and SO3 surfaces, as well as, on non‐polar CF3 functions. The best proliferation response was obtained on surfaces with primary amine groups. The results indicate that the surface (zeta) potential might be a critical parameter for cellular interactions, but also the substratum wettability and the type of functional groups have to be controlled in order to improve the biocompatibility of material surfaces.  相似文献   

12.
用磁过滤阴极真空弧源法在单晶硅基片上制备纯铁薄膜,分析了薄膜表面的组成、元素价态和薄膜的物相结构,研究了薄膜的腐蚀降解行为和抗凝血性能. 结果表明:具有纳米晶粒的纯铁薄膜其腐蚀速率低于普通晶粒的纯铁,在纯铁薄膜表面粘附的血小板数量少于316L不锈钢, 且激活和团聚比较轻微,增生的伪足数量比较少;纯铁薄膜表面对血浆中的凝血因子激活比较轻微,具有较好的抗腐蚀性和血液相容性.  相似文献   

13.
The effects of low frequency cold plasma treatments on the microstructure and chemistry of Polyethylene (PE) have been investigated. PE plates and fibers were exposed to plasmas of argon and oxygen gases. The surface wettabilities of plasma-treated plates were monitored. Possible physical changes on fiber surfaces were observed by a scanning electron microscope (SEM) at micrometer scale and by an atomic force microscope (AFM) at nanometer scale after this process. The effects of plasma treatment on surface chemistry of PE fibers have been analyzed by using an X-ray photoemission spectroscope (XPS). The fibers modified by plasma treatments were used in prismatic cementitious composites. The flexural performance of samples were characterized at two different ages (28 days and 8 months). Results showed that plasma treatment caused significant modifications on fibers’ surface structure and composites’ performance. Proper plasma treatment conditions significantly leads to improvement of multiple cracking behavior of fiber reinforced composites.  相似文献   

14.
Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO2 peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V.  相似文献   

15.
To improve the blood compatibility of Bombyx mori silk fibroin (SF) film, the film was modified by SO2 gas plasma treatment, or by a two-step process including NH3 gas plasma treatment and reaction with 1,3-propane sultone. XPS and ATR-FTIR were used to analyze the surface chemical elements. In vitro antithrombogenicity was determined by the method of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) tests. Percents of sulfur element on the surfaces of both modified SF films were 4.03% and 3.30%, respectively, while that of the control film was only 0.32%. Moreover, the antithrombogencity of treated films was increased remarkably due to surface sulfonation. The results implied a potential use of sulfonated SF for blood-contacting biomaterials.  相似文献   

16.
The edge surface of pyrolytic graphite (PG) has been oxidized by electrochemical and oxygen plasma treatments. The structure of the oxidized edge surfaces of PG and the interaction between the oxidized surface and poly(vinyl chloride) (PVC) have been studied by means of Fourier transform — infrared attenuated total reflection (FT-IR ATR) spectroscopy. Phenolic hydroxyl groups and functional groups with a carbonyl group are present on the untreated and all oxidized edge surfaces. For all the surfaces, some of the phenolic hydroxyl groups are linked by hydrogen bonds to each other or functional groups with a carbonyl group, part of the carboxyl groups also being linked by hydrogen bonds to each other. Lactone, carboxyl, and quinone structure moieties are formed on the edge surface by the electrochemical treatment. Among the moieties, quinones are mainly introduced to the edge surface by the severe electrochemical treatment. Quinones are not present on the untreated and the plasma-treated edge surfaces. FT-IR ATR spectra provide evidence for the existence of hydrogen bonds between the > C = O groups present on the edge surface and PVC.  相似文献   

17.
In order to functionalize the surface of blown low‐density polyethylene (LDPE) and cast polypropylene (CPP) films, and ultimately to maximize the attachment of active molecules onto them, the optimum treatment parameters of capacitively‐coupled radio‐frequency (13.56 MHz) oxygen plasma were investigated by using contact angle, toluidine blue dye assay, X‐ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR‐FTIR). Contact angle values of LDPE and CPP samples decreased significantly after oxygen plasma treatment. They further decreased as the plasma power level increased. The treatment time had no substantial effect on contact angle value. The optimum treatment conditions for LDPE and CPP films for maximizing carboxyl functionality without causing observable surface changes were found to be 200 W/200 mTorr and 250 W/50 mTorr, respectively, when treated for 3 min. The maximum carboxyl group concentration obtained with LDPE and CPP films were 0.46 and 0.56 nmol/cm2, respectively. The percent of oxygen atoms on the surface of plasma‐treated LDPE and CPP films was determined by XPS analysis to be 22.6 and 28.7%, respectively. The ATR‐FTIR absorption bands at 1725–1700 cm?1 confirmed the presence of carboxylic acids on LDPE and CPP films. By exposing the plasma‐treated sample to air rather than water and treating films repeatedly with oxygen plasma, a higher carboxyl group concentration could be obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reports our attempts to crosslink low molecular weight proteins namely trypsin and insulin using glutaraldehyde on polycarbonate surface and to evaluate how such surfaces may affect the blood compatibility of the polymer, by studying the interfacial energies of the modified polymer surface using advancing contact angle technique. The plasma recalcification time and platelet adhesion studies were also carried out. It has been observed that such low molecular weight proteins retard clotting.  相似文献   

19.
Poly(ethylene terephthalate) (PET) fabrics were modified by treating with radio frequency (RF) plasma of different gases, including argon (Ar), nitrogen (N2), oxygen (O2) and sulfur hexafluoride (SF6), under varied power (50-150 watt) and time period (0.5-20 min). Observations indicated that plasma has affected the morphology and roughness of PET fiber surface in the nano-scale level. After plasma treatment, test patterns were printed by inkjet printer directly onto the sample surface. The enhancement of color printing performance on PET fabric by plasma treatment was evaluated by color spectroscopy. The surface nano-modified PET fabrics by Ar, N2, O2, and SF6 plasmas all exhibited enhanced color yield. AFM, SEM, FTIR-ATR and XPS results suggested that the improved pigment color yield was neither clearly contributed by the wettability of the fabrics nor the polar group induced onto the fiber surfaces but rather mainly by the alteration of surface roughness.  相似文献   

20.
Y. Yin  L. Hang  D.R. McKenzie 《Thin solid films》2008,516(16):5157-5161
Diamond-like carbon (DLC) thin films have unique properties for biological and medical applications due to their excellent bio-compatibility, chemical inertness, and superior mechanical properties. It is important to understand the surface properties of DLC thin films for these applications. In this work, we showed that after DLC deposition, NiTi surfaces became much smoother by choosing suitable deposition conditions. Adsorption and wetting properties of DLC films were studied. The adsorption properties of DLC films were unusual in that a hysteresis was found in the adsorption/desorption isotherms, which cannot be interpreted using the conventional theory of capillary condensation in pores. The model proposed in this work for this unusual hysteresis characteristic is that the hysteresis results from the non-wetting property of DLC surfaces in the nano-scale. The nano-sized droplets formed on the DLC surfaces may require significantly higher energy to evaporate than the formation energy. Argon plasma treatment resulted in a small decrease of the contact angles. After oxygen plasma treatment, the wetting contact angles reduced significantly due to the increase of carbon-oxygen sites on the surfaces, suggesting that the low concentration of carbon-oxygen sites on the surfaces of DLC films contributed to the adsorption hysteresis observed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号