首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在高压反应釜内,以四氢萘为供氢溶剂,Fe2O3+S为催化剂,研究了温度、反应时间、初始氢压、配比对兖州煤与秸秆共液化的影响。结果表明,提高反应温度,转化率、油产率增加;延长反应时间对转化率、油产率的影响较小;升高初始氢压,转化率、油产率刚开始增加,6 MPa以后增幅趋缓;在m(秸秆)∶m(兖州煤)=0.5∶9.5时,共液化的油产率为60.45%,比兖州煤单独液化的油产率提高了4.17%;在m(兖州煤)∶m(秸秆)=9.5∶0.5,440℃,8 MPa,90 min的条件下,共液化转化率和油产率达到最大,分别为83.58%和63.1%。  相似文献   

2.
美国催化两段煤直接液化工艺技术   总被引:2,自引:1,他引:2  
马治邦 《煤化工》1990,(4):12-16
催化两段煤液化工艺(CTSL)是目前比较先进的煤直接液化工艺技术。煤液化的热溶解和加氢反应在分开又紧密相连的两个沸腾床反应器内同时进行,液化产物先用氢淬冷,重质油回收作溶剂,排出的固体物主要组成是未反应煤和灰渣。CTSL 工艺液化伊里诺斯洗精烟煤,C_4——402℃馏分油产率77.9%,同一段氢——煤工艺相比较,馏分油收率提高53%;氮、硫杂原子脱除率提高40~50%;煤液化油成本降低17%。列出液化原料煤8400t/dCTSL 液化工厂的初步设计结果。  相似文献   

3.
研究了不同煤化程度的煤用各种溶剂在氮气氛和370~390℃下的溶剂分解液化,以阐明溶剂在这种煤液化过程中的作用,并找出能有最高液化产率的合适溶剂。发现在这些条件下,产率在很大程度上既取决于溶剂也取决于煤的本性。芘和SRC—BS沥青对于在此温度下可熔且具有高流动度的三池煤是良好的溶剂。不过,芘对于伊特曼(Itamann)煤和太平洋煤效率较低。伊特曼煤须在更高温度下才熔化,太平洋煤则不熔化。讨论了溶剂分解液化的机理,包括煤和溶剂在反应温度下的本性,以便了解不熔煤在溶剂分解液化过程中取得高产率所需要的性质。发现对不熔煤进行高产率液化,应使溶剂分解反应在溶剂和煤之间进行,这样就能在反应温度得到低粘度的液相。当SRC—BS用作溶剂时,溶剂分解反应可能是氢转移反应。  相似文献   

4.
溶剂组成对褐煤催化液化的影响   总被引:1,自引:0,他引:1  
本文采用60ml微型高压釜,以杂酚油为溶剂,在氨初压6.0MPa,反应温度400℃,反应时间30min的条件,以四氢萘,邻苯二酚为模型化合物,考察了溶剂中供氢组分和酚类物质对先锋褐煤催化液化的影响.实验结果表明,供氢组分对液化转化率和油品产率皆有重要作用;酚类物质对液化转化率影响较小,但能改变液化产物之间的分布,催化剂活性是随溶剂中供氢组分和酚类物质百分含量的改变而发生变化.  相似文献   

5.
兖州煤与木质素共液化反应性的研究   总被引:3,自引:0,他引:3  
采用单因素法,以四氢萘为供氢溶剂,以Fe2O3和S为催化剂,在高压釜内,研究了配比、温度、反应时间和初始氢压对兖州煤与木质素共液化反应性的影响.结果表明,在液化中适量添加木质素可提高兖州煤的液化反应性.综合考虑实验条件和经济成本,得到共液化的最佳工艺条件为:兖州煤:木质素(质量比)=9:1,440℃,60min,8MPa,在此条件下转化率与油产率分别为86.8%与62.9%.  相似文献   

6.
以洗油为供氢溶剂,考察了溶煤比、反应温度和氢初压对新疆五彩湾煤样加氢液化性能的影响.结果表明,在煤液化中,洗油部分加氢,生成具有强供氢能力的物质,增强其供氢能力,可以作液化溶剂,且溶煤比由四氢萘为溶剂的3降低到1.75;虽然氢初压为8.0 MPa,但反应终压为16.3 MPa,与四氢萘为溶剂时相当;油产率达到59.24%,转化率达到81.05%.  相似文献   

7.
以长庆催化裂化重油(FCC)和催化裂解重油(DCC)两种重油及魏墙煤(WQ)为原料,通过重油热处理、加氢处理及油煤共液化,利用元素分析、红外光谱分析及热重分析等手段对产物结构组成进行了分析表征,考察了两种重油热稳定性及其对油煤共加氢液化性能的影响。结果表明:重油高温热稳定性较差,热处理后正己烷不溶物质量分数明显提高;FCC易于脱氢芳构化,DCC以极性组分缩合为主,催化加氢能够抑制FCC高温脱氢;以FeS+S为催化剂催化时,供氢溶剂四氢萘(THN)中WQ液化转化率显著高于非供氢溶剂甲苯中WQ液化转化率,440℃时THN溶剂中WQ转化率最高,达到71.2%;油煤共加氢液化时,FCC和DCC都可以不同程度促进WQ转化,两种溶剂中WQ共液化转化率最高分别达到80.3%(FCC,420℃)和83.5%(DCC,420℃),但是沥青烯(AS)和前沥青烯(PA)等重质产物收率高;重油热稳定性是影响油煤共液化及液化产物分布的重要因素,重油主要通过自身缩合以及与煤共液化产物作用形成重质产物;FCC/WQ共液化重质产物以AS为主,主要来自于FCC脱氢缩合;DCC/WQ共液化时DCC极性组分缩合形成以PA为...  相似文献   

8.
对不同惰质组分含量的上湾煤样进行了高压釜煤液化实验。在反应温度440~465℃,氢初压7~11 MPa条件下,研究了5种不同惰质组含量的上湾煤的液化性能。结果表明:在反应温度为440~465℃内,随着温度的升高,除惰质组含量最高的5号煤样在温度高于465℃时转化率开始下降以外,其余不同惰质组含量的4种煤的转化率、油产率、气产率和氢耗均随着温度的升高而增加,沥青烯产率随温度的升高而减小;随着氢初压的增加,不同显微组含量的煤的转化率和油产率增加,沥青烯产率减小。惰质组含量越高,煤的转化率和油收率越低。  相似文献   

9.
以新疆淖毛湖煤和四氢萘为原料,在2L高压釜中进行加氢液化实验,开展新疆淖毛湖煤直接液化过程调控研究,考查了温度、压力、时间及催化剂对氢耗、气产率、转化率、油产率和沥青类物质产率的影响规律,探讨了复杂多相体系液化产物中氢的分布规律,揭示了煤直接加氢液化反应与氢分布规律的内在联系.结果表明:在420℃,15MPa和60min的反应条件下,淖毛湖煤的转化率为94%,油产率为65%,是适宜直接液化的优良煤种;氢较均匀地分布在淖毛湖煤加氢液化的轻质产物(水、150℃馏分油、150℃~260℃馏分油和260℃~350℃馏分油)中,在350℃重质馏分油中分布最高,接近30%;氢在液化产物中的分布与加氢液化反应效果呈现出正相关特征.  相似文献   

10.
采用微型高压反应釜,在不同温度和氢初压条件下,考察了白洞煤的液化性能,并采用模拟蒸馏对液化产物油进行了分析.结果表明,随着温度和氢初压的增加,白洞煤液化总转化率和油产率均有所提高,其中,温度对反应性影响更为显著,在7MPa的氢初压下,温度由420℃升高到450℃时,总转化率和油产率分别提高20.98%和18.78%.同时,随温度和氢初压增加,产物呈规律性的变化,沥青烯和前沥青烯的产率下降,水产率基本不发生变化,CO+CO2,C1~C4产率及氢耗率增加.液化产物油中,中油含量最高,占产物油的57.5%,轻油和重油分别占9.5%和33.0%.产物油的烷碳含量高于芳碳含量.  相似文献   

11.
在30mL油品加氢实验装置上,进行煤直接液化全馏分油中重质油(320℃)加氢实验,考察反应温度、压力和体积空速变化对加氢生成油物性的影响.结果表明,油品的脱硫率和脱氮率与反应温度和反应压力成正比,与体积空速成反比;升高反应温度和反应压力或降低体积空速,都有利于加氢油品中单环芳烃和双环芳烃质量分数的增加、多环芳烃质量分数的减少.计算得到的油品供氢指数(IPDQ)增加,从而溶剂供氢能力增加.不同加氢条件下得到的油品物性表明,反应温度为380℃,压力为19MPa,体积空速为0.8/h时,得到的重质馏分油作为煤液化循环溶剂使用时供氢性最好.  相似文献   

12.
研制了一种复合催化剂,考察了催化剂对神东煤直接液化的催化活性.主要研究了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的863催化剂进行对比.结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加;中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低.与863铁基催化剂相比,小于74μm的复合催化剂催化效果要优于后者.该催化剂中含有一定镍,镍的强加氢作用使得煤液化反应转化率和油产率增加.  相似文献   

13.
研制了一种复合催化剂,考察了催化剂对神东煤直接液化的催化活性,主要考察了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的863催化剂进行对比.研究结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加;中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低.与863铁基催化剂相比,小于74μm的复合催化剂的催化效果要优于后者.该催化剂中含有一定的镍,镍的强加氢作用使得煤液化反应转化率增加,油产率增加.  相似文献   

14.
煤直接液化中溶剂的作用和种类   总被引:14,自引:3,他引:11  
讨论了煤液化中溶剂的作用和种类,煤液化中溶剂的作用为溶解溶胀作用,稀释分散粒以及对煤热裂解生成的自由基的保护作用。并着重讨论了供氢溶剂的供氢作用和转移氢作用。溶剂的各类分为工业和研究中常用的普通混合溶剂,煤焦油,石油渣油等重质油溶剂和废塑料、废橡胶等废化学品溶剂,初步分析了它们的供氢作用和传递转移活性氢作用。  相似文献   

15.
讨论了煤炭直接液化过程中溶剂的特点、作用及质量要求,煤液化溶剂具有一般溶剂的功能,同时还具有良好的供氢和传递氢的功能特点,起到溶解、分隔煤裂解生成的自由基的作用,溶剂必须具有一定的分子结构和分子大小。初步讨论了表征煤液化循环溶剂供氢性的指标,指出普通溶剂如四氢萘和二氢萘等部分饱和的芳香化合物可直接用作煤液化溶剂,多环芳烃含量较高的煤焦油和石油系重质油,经过预加氢处理提高溶剂的供氢性后,可作为煤液化过程的起始溶剂或替代溶剂。  相似文献   

16.
采用NMP/CS(2体积比1︰1)混合溶剂,在微波辐射下对五彩湾煤进行溶胀处理,并将原煤和微波溶胀煤样进行对比表征和加氢液化实验,考察了液化反应温度、反应气氛、溶胀剂对液化效果的影响。结果表明:微波溶胀后,煤样孔隙结构显著增加,结构发生变化。在液化条件是温度450℃、氢初压6.0 MPa、溶煤比1.75︰1和反应时间60 min,油产率和转化率分别是原煤55.02%和76.76%,微波溶胀煤74.03%和84.78%。  相似文献   

17.
为研究新疆淖毛湖煤直接液化反应特性和产品分布规律,在0.5 L间歇式高压釜中,以四氢萘为溶剂,纳米氧化铁为催化剂及S为助剂,考察了不同反应温度、反应时间条件对煤转化率和液化产物收率的影响。结果表明:淖毛湖煤易液化,在反应器温度刚加热到425℃时,煤转化率和液化油收率已分别达到96.6%、56.68%;随着反应温度的升高以及反应时间的延长,煤转化率、氢耗、气体产率、油收率逐渐增加,而沥青类物质产率下降,水产率基本保持不变;当反应温度进一步增加以及反应时间继续延长,轻质油将会发生裂解,导致气体产率进一步增加,而油收率有所降低。当反应温度为455℃、反应时间为80 min时,煤转化率达到99.6%,油、沥青和气体收率分别为73.42%、1.64%、16.61%,氢耗为4.85%。基于液化试验结果,建立了5集总的反应动力学模型,采用优化算法获得动力学模型参数,煤转化率、沥青类物质和油气收率的模拟值和试验值的相对误差分别为0.5%、1.0%、8.0%。  相似文献   

18.
为了考察溶胀作用对液化油煤浆黏度变化的影响作用,参照煤直接液化工艺条件,在四氢萘(THN)、N,N-二甲基甲酰胺(DMF)、液化起始溶剂(STA)和液化循环溶剂(REC)等不同有机溶剂中对胜利煤进行了溶胀行为研究。采用扫描电镜、孔隙比表面积分析仪、红外光谱仪等手段,研究了不同条件下胜利溶胀煤的表面性质变化。结果表明,胜利煤在极性溶剂N,N-二甲基甲酰胺中的溶胀度要大于在非极性溶剂四氢萘、起始溶剂和循环溶剂中的溶胀度;随着温度的升高,胜利煤的溶胀速率增大。溶胀后的胜利煤呈松散的云状结构,煤的形貌发生了一定程度变化;溶胀煤的孔径增大,比表面积减小。  相似文献   

19.
用带有连续取样装置的半连续反应器进行了一些试验,以阐明催化剂和溶剂在煤液化过程中的作用。结果表明,在预热期间,溶剂具有较大的作用,而催化剂在这个阶段没有什么效果。在反应条件为450℃和大约20mpa,对于促进液化,催化剂比溶剂更为有效。供氢能力高的溶剂能增加油的效率,如果有催化剂存在能提供成倍的效果。因此,在煤直接液化工艺研究开发中,溶剂的选择同催化剂的选择同样重要。  相似文献   

20.
选用胜利褐煤和玉米秸秆为原料,在高压反应釜内,对其共液化反应性进行了研究。利用索氏抽提对液相产物进行了分离,系统地考察了反应温度、原料配比、初始氢压和反应时间对胜利煤和秸秆共液化的影响。研究结果表明:秸秆能够有效地促进胜利煤的转化,提高油产率。在反应温度420℃、初始氢压9MPa、秸秆/胜利煤质量配比=2/8和反应时间60min时,胜利煤和秸秆共液化的转化率和油产率分别为99.74%、65.30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号