首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have succeeded to fabricate body-centered cubic (bcc) single phase of Fe–Mn–Ga alloys using melt-spinning technique. Heusler type L21 structure of Fe2MnGa alloy are predicted to have half-metallic properties, however bulk Fe2MnGa alloys crystallize into face-centered cubic (fcc) lattice with small admixture of bcc phase. By changing either ejection temperature or rotation speed of melt-spinning processing parameters, fcc or bcc lattice can be obtained from same precursor ingot. For stoichiometric Fe2MnGa as-spun alloy, super-lattice diffraction peaks indicative of L21 structure are observed from XRD measurements. The as-spun bcc alloys transform into ferromagnetic hexagonal lattice by thermal annealing.  相似文献   

2.
Fe-based soft-magnetic metallic glasses (MGs) of Fe80−xCrxP9C9B2 (x = 0, 2, 5, 8 and 16 at.%) with high glass-forming ability (GFA), good soft-magnetic properties and high corrosion resistance are fabricated. With the addition of Cr to FePC-based alloys, the GFA and saturation magnetization (Ms) slightly decrease while the corrosion resistance effectively increases. The Fe–Cr–P–C–B BMGs exhibit good GFA and fully glassy rods can be produced up to 1.8 and 1.5 mm in diameter for the 2 and 5 at.% Cr added alloys, respectively. The alloys with 2 and 5 at.% Cr addition also show good soft-magnetic properties featured by high Ms of 1.16 and 1.04 T, low coercivity of 2.7 and 2.2 A/m, respectively. Besides, the corrosion behavior of the alloys was studied by immersion tests and potentiodynamic polarization measurements. It was found that the addition of Cr efficiently enhances the corrosion resistance of Fe–Cr–P–C–B alloys and the glassy alloy with 5 at.% Cr addition exhibits better corrosion resistance in comparison with the stainless steel SUS304 in 3 mass% NaCl solution. The combination of large GFA, good soft-magnetic properties, high corrosion resistance as well as low cost makes the Fe–Cr–P–C–B alloys as promising soft-magnetic and anti-corrosive materials for industrial applications.  相似文献   

3.
The effects of Dy addition on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of quaternary (Fe0.76−xDyxB0.24)96Nb4 (x = 0–0.07) bulk metallic glasses (BMGs) were investigated. Increasing Dy content from x = 0 to 0.05 extended the supercooled liquid region up to 112 K, allowing the fabrication by copper mold casting of BMGs rods with 5.5 mm in diameter. The high GFA was found to be related to the structure of primary crystalline phase. For the x = 0.05 alloy, the competitive formation process of the complex Fe23B6 and Dy2Fe14B phases enabled to obtain the largest GFA value. Moreover, the Fe–Dy–B–Nb BMGs exhibited good soft-magnetic properties, i.e., high saturation magnetization of 1.18–0.56 T and low coercive force of 1.9–21.6 A/m. In addition, the glassy alloy rods also showed high compressive fracture strengths of 4400–4150 MPa and high Vickers hardness of 1110–1090 kg/mm2.  相似文献   

4.
(Zr35Ti30Be27.5Cu7.5)100?xNbx (x = 0, 5, 8, 10, 12, 15 at.%) glass-forming alloys were prepared by copper-mould suction casting. The alloys with different Nb contents exhibited different microstructures and mechanical properties. The proper addition of Nb (x = 5, 8 at.%) to the Zr–Ti–Be–Cu system could ensure the formation of mostly amorphous phase. And excessive amount of Nb favored the formation of the bcc β-Zr solid solution. The alloys with Nb contents of 8 at.%, 10 at.%, and 12 at.% displayed the distinguished plasticity of 11.1%, 7.6%, and 11.0%, respectively.  相似文献   

5.
《Intermetallics》2007,15(8):1139-1146
Effects of La content on the glass transition and crystallization process of Al94−xNi6Lax (x = 3–9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. The results show that the thermal stability increases with increasing the La content. The crystallization changes from a two-stage process without glass transition at x = 3–6 to a three-stage one with obvious glass transition at x = 7–9. The first crystallization process results in precipitation of single fcc-Al at x = 3–5, fcc-Al plus metastable phase(s) at x = 6 and 7, and single metastable phase at x = 8 and 9. The first crystallization process at x = 4 and 5 is the growth of quenched-in nuclei, whereas that at x = 6, 7 and 9 is the diffusion-controlled growth with a decreasing, constant and increasing nucleation rate, respectively. The activation energy for the first crystallization process is larger in the eutectic reaction than that in the primary reaction, and is the highest when the number of the products is the most.  相似文献   

6.
Effects of Cu addition on the glass-forming ability (GFA), thermal stability, magnetic properties and crystallization process of (Fe0.76Si0.09B0.1P0.05)99−xNb1Cux (x = 0, 0.25, 0.5, 0.75, 1) alloys were investigated. The introduction of Cu effectively stimulates the precipitation of the α-Fe(Si) without obvious deterioration of the GFA, and successfully modifies the simultaneous precipitation of α-Fe(Si), Fe2B and Fe3(B,P) phases in (Fe0.76Si0.09B0.1P0.05)99Nb1 alloy into separable precipitation of each phase at different temperatures during annealing, leading to the enhancement of soft magnetic properties. The saturation magnetic flux density of the representative (Fe0.76Si0.09B0.1P0.05)98.25Nb1Cu0.75 alloy could be enhanced from 1.43 to 1.51 T after annealing at 530 °C for 10 min due to the precipitation of α-Fe(Si) nanoparticles with a diameter of about 22 nm dispersing randomly in the amorphous matrix. The integration of high GFA and excellent soft magnetic properties makes the FeSiBPNbCu alloys promising soft magnetic materials for industrial applications.  相似文献   

7.
《Intermetallics》2006,14(8-9):951-956
The amorphous Zr65−xyAl7.5 Cu17.5Ni10SixBy alloy ribbons, x=1–4 and y=1–2, with 0.1 mm thickness were prepared by melt spinning. The thermal properties and microstructure development during the annealing of amorphous alloys were investigated by the combination of differential thermal analysis, differential scanning calorimetry, X-ray diffractometry, and TEM. Both of the glass transition temperature and the crystallization temperature for Zr65−xyAl7.5 Cu17.5Ni10SixBy alloys increases with the silicon and boron additions and reaches 674 and 754 K, respectively for Zr60Al7.5 Cu17.5Ni10Si4B1 alloy. The highest Trg (0.62) and γ value (0.43) occurred at the Zr60Al7.5Cu17.5Ni10Si4B1 alloy. In addition, the Zr60Al7.5Cu17.5Ni10Si4B1 alloy was revealed to have the highest activation energy of crystallization (about 370 kJ/mol as determined by the Kissinger plot). This value is about 20% higher than the activation energy of crystallization for the Zr65Al7.5Cu17.5Ni10 based alloy (314 kJ/mol). In parallel, the alloy 4Si1B also performs a longer incubation time at higher isothermally annealing temperature. All of the evidence implies that Zr60Al7.5 Cu17.5Ni10Si4B1 alloy exhibits the highest thermal stability among those alloys in this study. The crystallization behavior for the alloy 4Si1B isothermally annealed at the supercooled temperature region for different time has also been examined by TEM and discussed.  相似文献   

8.
Bulk magnetic Fe80−xCoxP13C7 (x = 0, 5, 10, 15, 20 at.%) glassy alloy rods were prepared by the combination method of fluxing treatment and J-quenching technique, and the attainable maximum diameter for fully glass formation gets to 2.5 mm for x = 5. The effects of Co substitution for Fe on the glass formation ability (GFA), thermal stability, mechanical properties and magnetic properties have been investigated systematically. It was found that the partially substitution of Co for Fe can enhance the GFA of Fe80P13C7 alloy, while excessive substitution will lead to the degradation of GFA. The compressive test shows that the substitution of Co for Fe results in the decease of fracture strength, and then significantly enhance the room temperature plastic strain of the present Fe-based BMGs, which can be identified that the plastic strain at room temperature gets to 2.5% and 3.0% for x = 5 and 10, respectively. The saturation magnetization of Fe80−xCoxP13C7 (x = 0, 5, 10, 15, 20 at.%) BMGs firstly increases from 1.477 T to 1.550 T with increasing Co content from x = 0 to 5, and then deceases from 1.549 T to 1.519 T with increasing Co content from x = 5 to 20. The Curie temperature of the present FeCoPC BMGs quickly increases with the substitution of Co for Fe.  相似文献   

9.
The microstructure of rapidly solidified melt-spun ribbons of (Fe0.75M0.10B0.15)100−xCux (M = Si, Zr) alloys was investigated focusing on amorphous-phase formation and the solidification structure. In this study, Fe–Cu–Si–B and Fe–Cu–Zr–B alloys were designed to show amorphous-phase formation and liquid-phase separation simultaneously. Amorphous-phase formation was confirmed in both Fe–Cu–Si–B and Fe–Cu–Zr–B alloys. Minor exceptions in a combination map of mixing enthalpy and quaternary predicted phase diagram are acceptable range for designing a quaternary Fe–Cu-based alloy system that shows liquid-phase separation in Fe-based and Cu-based liquids and the formation of an Fe-based amorphous phase.  相似文献   

10.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   

11.
S. Helle  B. Assouli  D. Guay 《Corrosion Science》2010,52(10):3348-3355
CuxNi85−xFe15 (0 ? x ? 85 wt.%) compounds were prepared by mechanical alloying. Monophased face centered cubic (fcc) Cu-Ni-Fe alloys were obtained after 10 h of milling for x varying from 0 to 50, whereas bi-phased compounds fcc Cu-Ni-Fe + body centered cubic (bcc) Fe were formed with richer-Cu compounds. Their oxidation kinetics in air at 750 °C is parabolic for all compositions and increases drastically for x > ∼30. A stable anode for aluminium electrolysis in low-temperature (700 °C) KF-AlF3 electrolyte was obtained for 65 ? x ? 85. However, a substantial increase of the Cu contamination in produced aluminium was observed for x > 70.  相似文献   

12.
To elucidate the effects of Fe on the Ti–V-based hydrogen storage electrode alloys, the Ti0.8Zr0.2V2.7−xMn0.5Cr0.8Ni1.0Fex (x = 0.0–0.5) alloys were prepared and their structures and electrochemical properties were systematically investigated. XRD results show that all the alloys consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with bcc structure. With increasing Fe content, the abundance of the C14 Laves phase gradually decreases from 43.4 wt% (x = 0.0) to 28.5 wt% (x = 0.5), on the contrary, that of the V-based solid solution phase monotonously increases from 56.6 wt% to 71.5 wt%. In addition, SEM observation finds that the grain size of the V-based solid solution phase is first gradually reduced and then enlarged with increasing x. Electrochemical investigations indicate that the substitution of Fe for V markedly improves the cycling stability and the high rate dischargeability of the alloy electrodes, but decreases the maximum discharge capacity and the activation performance. Further electrochemical impedance spectra, the linear polarization curve and the potentiostatic step discharge measurements reveal that the electrochemical kinetics of the alloy electrodes should be jointly controlled by the charge-transfer reaction rate on the alloy surface and the hydrogen diffusion rate in the bulk of the alloys. For the alloy electrodes with the lower Fe content (x = 0.0–0.2), the hydrogen diffusion in the bulk of the alloys should be the rate-determining step of its discharge process, and while x increases from 0.3 to 0.5, the charge-transfer reaction on the alloy surface becomes to the rate-determining step, which induces that the electrochemical kinetics of the alloy electrodes is firstly improved and then decreased with increasing Fe content.  相似文献   

13.
The thermal transformations and crystal structures in the ordered bcc phases appearing in Ni2−xMnSb alloys have been investigated. Thermo-analyses on NiMnSb(x = 1) show three λ-shaped peaks suggesting a magnetic and chemical ordering transitions at approximately 450, 865 and 965 °C. With decreasing x, the first and second peak temperatures gradually decrease, while the third one increases. By Z-contrast imaging technique, it was confirmed that the second peak corresponds to the order-disorder transition of vacancies from the L21 to the C1b structure.  相似文献   

14.
Phase diagrams of copper–nickel–palladium binary alloys were determined by density functional theory cluster expansion method. The system has both magnetic and non-magnetic binaries and subtle phase coexistence areas between similar and different kind of lattice types. Furthermore, the CuPd binary has several ordered structures. Cluster expansion models were constructed by heuristic cluster selection for all of the fcc structures and for the CuPdbcc structure. Both configurational and magnetic phase diagrams were determined. Small amount of nickel magnetize fcc palladium to 0.26 μB from which the magnetic moment rises almost linearly to that of pure Ni. In CuNi, 0.46 x-Ni is needed for the magnetic transition. In CuPd alloy in 0 K, configurational free energy difference between bcc and fcc lattice resulting to phase separation is only about 1.1 kJ/mol-atoms. Low temperature energetics and magnetic phase diagrams have good quantitative agreement with available experimental and theoretical results. Finite temperature properties of the alloys are in good qualitative agreement with experimental results.  相似文献   

15.
The effects of Cu substitution on the phase transitions and magnetocaloric effect of Mn50Ni40−xCuxSn10 Heusler alloys were investigated. With the increase of Cu content, the martensitic transformation (MT) temperature shifts substantially towards lower temperature, while the Curie temperature of austenite remains almost unchanged. The reverse MT temperature decreases from 180 to 171 K for Mn50Ni39Cu1Sn10 alloy as the magnetic field increases from 1 to 30 kOe. Under an applied magnetic field of 30 kOe, the maximum values of magnetic field induced entropy changes are 19.6, 28.9, and 14.2 J/kg K for x = 0, 1, and 2, respectively. The effective refrigerant capacities and hysteresis losses for these alloys were discussed in this paper.  相似文献   

16.
A. Roy 《Corrosion Science》2007,49(6):2486-2496
The electrochemical response of Al94−xNi6Lax alloys (x = 4, 5, 6, 7) after different stages of devitrification was studied in 0.05 M Na2SO4 as well as in different concentrations [0.001 M, 0.01 M and 0.1 M] NaCl solutions. Complementary crystallization studies were carried out to elucidate the composition dependent phase evolution in these alloys. It was observed that the primary crystallization did not cause any deterioration in the corrosion resistance of the alloys as compared to the amorphous alloys. In the case of Al87Ni6La7, there was actually an improvement in the passivating ability in benign media. The various primary crystalline phases in the different alloys investigated did not cause different electrochemical responses. However, the onset of secondary crystallization caused a reduction in the corrosion resistance in the NaCl media through a loss in passivating ability of all the alloys. This is due to increased galvanic activity as well as the loss of the amorphous phase.  相似文献   

17.
The phase constitutions, microstructural evolutions, and mechanical properties of Nb–16Si–22Ti–2Hf–2Al–2Cr–xFe alloys (where x = 1, 2, 4, 6 at.%, hereafter referred to as 1Fe, 2Fe, 4Fe and 6Fe alloys, respectively) prepared by arc-melting were investigated. It was observed that the nominal Fe content affected the solidification path of the multi-component alloy. The as-cast 1Fe alloy primarily consisted of a dendritic-like NbSS phase and (α+γ)-Nb5Si3 silicide, and the as-cast 2Fe and 4Fe alloys primarily consisted of an NbSS phase, (α+γ)-Nb5Si3 silicide and (Fe + Ti)-rich region. In addition to the NbSS phase, a multi-component Nb4FeSi silicide was present in the as-cast 6Fe alloy. When heat-treated at 1350 °C for 100 h, the 1Fe and 6Fe alloys almost exhibited the same microstructures as the corresponding as-cast samples; for the 2Fe and 4Fe alloys, the (Fe + Ti)-rich region decomposed, and Nb4FeSi silicide formed. The fracture toughness of the as-cast and heat-treated Nb–16Si–22Ti–2Hf–2Al–2Cr–xFe samples monolithically decreased with the nominal Fe contents. It is interesting that at room temperature, the strength of the heat-treated samples was improved by the Fe additions, whereas at 1250 °C and above, the strength decreased, suggesting the weakening role of the Nb4FeSi silicide on the high-temperature strength. As the nominal Fe content increased from 1 at.% to 6 at.%, for example, the 0.2% yield strength increased from 1675 MPa to 1820 MPa at room temperature; also, the strength decreased from 183 MPa to 78 MPa at 1350 °C.  相似文献   

18.
According to a recent study, Fe-based glassy alloys are expected good soft-magnetic properties such as high saturation magnetization and lower coercive force. We focused on Fe-based glassy alloys and have succeeded in developing novel glassy Fe97?x?yPxByNb2Cr1 (x = 5–13, y = 7–15) alloys for an inductor material. The glassy alloy series of Fe97?x?yPxByNb2Cr1 (x = 5–13, y = 7–15) have high glass-forming ability with the large critical thickness of 110–150 μm and high Bs of 1.25–1.35 T. The glassy alloy powder with chemical composition Fe77P10.5B9.5Nb2Cr1 exhibits an excellent spherical particle shape related to the lower melting point and liquid phase point. In addition, Fe–P–B–Nb–Cr powder/resin composite core has much lower core loss of 653–881 kW/m3, which is approximately 1/3 lower than the conventional amorphous Fe–Si–B–Cr powder/resin composite core and 1/4 lower than the conventional crystalline Fe–Si–Cr powder/resin composite core due to the lower coercive force of 2.5–3.1 A/m. Based on above results, the glassy Fe77P10.5B9.5Nb2Cr1 alloy powder enable to achieve ultra-high efficient and high quality products in a commercial inductor. In fact, the surface mounted inductor using Fe–P–B–Nb–Cr powder/resin exhibits the high efficiency of approximately 2.0% compared with the conventional inductors made of the crystalline Fe–Si–Cr powder/resin composite core.  相似文献   

19.
In present work, microstructure, martensitic transformation and mechanical properties of Ti44Ni47−xNb9Bx (x = 0, 0.5, 1, 5 at.%) alloys were investigated as a function of B content. The results show that the addition of B significantly influences the microstructure of the alloys. The microstructure of Ti44Ni47Nb9 alloy consists of B2 parent phase matrix and β-Nb phase. When the B content is 0.5 at.%, Nb3B2 phase presents. With further increasing B content to above 1 at.%, TiB and NbB phases present instead of Nb3B2 phase. With increasing B content, the transformation temperatures increase due to the reduced Ni/Ti ratio and Nb content in the matrix. The mechanical properties can be optimized by the addition of 1 at.% B.  相似文献   

20.
Addition of Fe refines the microstructure of Mo76-xSi14B10Fex (x = 0, 0.5, 1 at.%) composites containing α-Mo, Mo3Si and Mo5SiB2 phases, increases the hardness from 950 Hv (x = 0) to 1031 Hv (x = 1), and improves the oxidation resistance at temperature in the range of 800–1300 °C. The hardness of the base alloy substrate decreases only by <7% than that of as-solidified ingots, indicating good microstructural stability of the composite for high temperature application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号