首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar beet juice can serve as feedstock for ethanol product due to its high content of fermentable sugars and high energy output/input ratio. Batch ethanol fermentation of raw juice and thick juice proved that addition of mineral nutrients could not improve ethanol concentration, but could accelerate the fermentation rate. Fermentation of thick juice with an initial pH of 9.1 did not affect the fermentation process. The continuous ethanol fermentation of raw juice was performed at 35 °C with a dilution rate of 0.3 h−1, resulting in ethanol concentration, ethanol yield and productivity of 70.7 g L−1, 89.8% and 21.2 g L−1 h−1, respectively. A two-stage reactor was used in the continuous ethanol fermentation of thick juice by feeding fresh yeast cells into the second reactor. This process was stable at a total process dilution rate of 0.11 h−1 with an overall sugar concentration of 190 g L−1 in the influent. The ethanol concentration was kept at approximately 80 g L−1, corresponding to ethanol yield of 82.5% and productivity of 8.8 g L−1 h−1.  相似文献   

2.
In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO2 eq.), acidification potential (AP = 355.34 kg SO2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system.  相似文献   

3.
This study explores how two different cellulosic ethanol production system configurations (distributed versus centralized processing) affect some aspects of the economic and environmental performance of cellulosic ethanol, measured as minimum ethanol selling price (MESP) and various environmental impact categories. The eco-efficiency indicator, which simultaneously accounts for economic and environmental features, is also calculated. The centralized configuration offers better economic performance for small-scale biorefineries, while the distributed configuration is economically superior for large-scale biorefineries. The MESP of the centralized configuration declines with increased biorefinery size up to a point and then rises due to the cost of trucking biomass to the biorefinery. In contrast, the MESP in the distributed configuration continuously declines with increasing biorefinery size due to the lower costs of railroad transportation and the greater economies of scale achieved at much larger biorefinery sizes, including biorefineries that reach the size of an average oil refinery—about 30,000 tons per day of feedstock. The centralized system yields lower environmental impacts for most impact categories than does the distributed system regardless of the biorefinery size. Eco-efficiency analysis shows that the centralized configuration is more sustainable for small-scale biorefineries, while the distributed configuration with railroad transport is more sustainable for large-scale biorefineries. Compared with gasoline from petroleum, cellulosic ethanol fuel offers sustainability advantages for the following environmental impact categories: fossil energy consumption, global warming, human health impacts by particulate matter, ozone layer depletion, ecotoxicity, human health cancer, and human health non-cancer, depending somewhat on the biorefinery sizes and the system configurations.  相似文献   

4.
In producing cellulosic ethanol as a renewable biofuel from forest biomass, a tradeoff exists between the displacement of fossil fuel carbon (C) emissions by biofuels and the high rates of C storage in aggrading forest stands. To assess this tradeoff, the landscape area affected by feedstock harvest must be considered, which depends on numerous factors including forest productivity, the amount of forest in a fragmented landscape, and the willingness of forest landowners to sell timber as a bioenergy feedstock. We studied landscape scale net C balance by combining these considerations in a new, basic simulation model, CEBRAM, and applying it to a hypothetical landscape of short-rotation aspen forests in northern Michigan, USA. The model was parameterized for forest species, growth and ecosystem C storage, as well as landscape spatial patterns of forest cover in this region. To understand and parameterize forest owner decision making we surveyed 505 nonindustrial private forest (NIPF) owners in Michigan. Survey results indicated that 47% of these NIPF owners would willingly harvest forest biomass for bioenergy. Model results showed that at this rate the net C balance was 0.024 kg/m2 for a cellulosic ethanol system without considering land use over a 40 year time horizon. When C storage in aggrading, nonparticipating NIPF land was included, net C balance was 1.09 kg/m2 over 40 years. In this region, greater overall C gains can be realized through aspen forest aggradation than through the displacement of gasoline by cellulosic ethanol produced from forest biomass.  相似文献   

5.
Most of ethanol production processes are limited by lower ethanol production rate and recyclability problem of ethanologenic organism. In the present study, immobilized co-fermenting Saccharomyces cerevisiae GSE1618 was employed for ethanol fermentation using rice straw enzymatic hydrolysate in a packed bed reactor (PBR). The immobilization of S. cerevisiae was performed by entrapment in Ca-alginate for optimization of ethanol production by varying alginic acid concentration, bead size, glucose concentration, temperature and hardening time. Remarkably, extra hardened beads (EHB) immobilized with S. cerevisiae could be used up to repeated 40 fermentation batches. In continuous PBR, maximum 81.82 g L−1 ethanol was obtained with 29.95 g L−1 h−1 productivity with initial glucose concentration of 180 g L−1 in feed at dilution rate of 0.37 h−1. However, maximum ethanol concentration of 40.33 g L−1 (99% yield) with 24.61 g L−1 h−1 productivity was attained at 0.61 h−1 dilution rate in fermentation of un-detoxified rice straw enzymatic hydrolysate (REH). At commercial scale, EHB has great potential for continuous ethanol production with high productivity using lignocellulosic hydrolysate in PBR.  相似文献   

6.
Literature values for glucose release from corn stover are highly variable which would likely result in tremendous variability in bio-refinery ethanol yield from corn stover feedstock. A relatively recent change in United States corn genetics is the inclusion of the Bacillus thuringiensis (Bt) trait, which now accounts for three-fourths of all US planted corn acreage. The objective of this study was to evaluate the effect of corn grain yield, inclusion of the Bt trait, and location environment on corn stover quality for subsequent ethanol conversion. Two hybrid pairs (each having a Bt and non-Bt near-isoline) were analyzed giving a total of 4 hybrids. In 2010 and 2011, field plots were located in Michigan at four latitudinal differing locations in four replicated plots at each location. Stover composition and enzymatic digestibility was analyzed and estimated ethanol yield (g g−1) was calculated based on hydrolyzable glucan and xylan levels. Analysis showed that there were no significant differences in total glucose or xylose levels nor in enzymatically hydrolyzable glucan and xylan concentrations between Bt corn stover and the non-Bt stover isolines. Regression analyses between corn grain yield (Mg ha−1) and corn stover ethanol yield (g g−1) showed an inverse relationship indicative of a photosynthate source-sink relationship. Nevertheless, the quantity of stover produced was found to be more critical than the quality of stover produced in maximizing potential stover ethanol yield on a land area basis.  相似文献   

7.
The modified Renewable Fuel Standard (RFS2) prescribes a volume of biofuels to be used in the United States transportation sector each year through 2022. As the dominant component of the transportation sector, we consider the feasibility of the light-duty vehicle (LDV) parc to provide enough demand for biofuels to satisfy RFS2. Sensitivity studies show that the fuel price differential between gasoline and ethanol blendstocks, such as E85, is the principal factor in LDV biofuel consumption. The numbers of flex fuel vehicles and biofuel refueling stations will grow given a favorable price differential. However, unless the feedstock price differential becomes extreme (biomass prices below $100 per dry ton and oil prices above $215 per barrel), which deviates from historical price trends, LDV parc biofuel consumption will fall short of the RFS2 mandate without an enforcement mechanism. Additionally, such commodity prices might increase biofuel consumption in the short-term, but discourage use of biofuels in the long-term as other technologies that do not rely on any gasoline blendstock may be preferable. Finally, the RFS2 program goals of reducing fossil fuel consumption and transportation greenhouse gas emissions could be achieved through other pathways, such as notable improvements in conventional vehicle efficiency.  相似文献   

8.
Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO2 equiv MJ−1 to 17.4 g CO2 equiv MJ−1. Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry.  相似文献   

9.
β-caryophyllene is a common sesquiterpene compound currently being studied as a promising precursor for the production of high-density fuels. Acute demand for high-density fuels has provided the impetus to pursue biosynthetic methods to produce β-caryophyllene from reproducible sources. In this study, we produced β-caryophyllene by assembling a biosynthetic pathway in an engineered Escherichia coli strain of which phosphoglucose isomerase gene has been deleted. The 1- deoxy-d-xylulose 5-phosphate (DXP) or heterologous mevalonate (MVA) pathways were employed. Meanwhile, geranyl diphosphate synthase, glucose-6-phosphate dehydrogenase and β-caryophyllene synthase genes were co-overexpressed in the above strain. The final genetically modified strain, YJM59, produced 220 ± 6 mg/L of β-caryophyllene in flask culture. We also evaluated the use of fed-batch fermentation for the production of β-caryophyllene. After induction for 60 h, the YJM59 strain produced β-caryophyllene at a concentration of 1520 mg/L. The volumetric production fermented in the aerobic fed-batch was 0.34 mg/(L·h·OD600) and the conversion efficiency of glucose to β-caryophyllene (gram to gram) was 1.69%. Our results are the first successful attempt to produce β-caryophyllene using E. coli BL21(DE3), and provide a new strategy that is green and sustainable for the production of β-caryophyllene.  相似文献   

10.
Napiergrass (Pennisetum purpureum Schum.) is a promising low cost raw material which does not compete with food prices, has attractive yields and an environmentally friendly farming. Dilute sulfuric acid pretreatment of napiergrass was effective to obtain high yields of sugars and low level of degradation by-products from hemicellulose. Detoxification with Ca(OH)2 removed inhibitors but showed sugars loss. An ethanol concentration of 21 g/L after 176 h was found from the hydrolyzate using Pichia stipitis NBRC 10063 (fermentation efficiency 66%). An additional alkaline pretreatment applied to the solid fraction remaining from the diluted acid pretreatment improved the lignin removal. The highest cellulose hydrolysis values were found with the addition of β-glucosidase and PEG 6000. The simultaneous hydrolysis and fermentation of the cellulosic fraction with Saccharomyces cerevisiae, 10% (w/v) solid concentration, β-glucosidase and PEG 6000, showed the highest ethanol concentration (24 g/L), and cellulose hydrolysis values (81%). 162 L ethanol/t of dry napiergrass were produced (overall efficiency of 52%): 128 L/t from the cellulosic fraction and 34 L/t from the hemicellulosic fraction.  相似文献   

11.
Butanol produced from renewable feedstock is defined as an emerging biofuel and biochemical. Research efforts made during the last three decades on biochemical production of butanol via conventional ABE (acetone-ethanol-butanol) fermentation has tried to bring biobutanol close to competition with petrobutanol. However, each new effort of development has been often countered by new challenges, confining biobutanol production mostly to the laboratory scale. This review provides a systematic, comparative analysis of different steps in biochemical production of butanol and identifies the counteractive aspects and challenges to overcome. A special emphasis is given on process inhibitors, applied detoxification techniques, chemical supplements and research & development in industry in order to enhance and update ABE fermentation and make it cost effective. Biobutanol future lies in utilization of inexpensive cellulose enriched lignocellulosic hydrolysates and hyper-butanol producing bacteria, combined with specific detoxification techniques and followed by efficient continuous fermentation technologies together with in situ product recovery.  相似文献   

12.
Simultaneous saccharification and acetone–ethanol–butanol (ABE) fermentation was conducted in order to reduce the number of steps involved in the conversion of lignocellulosic biomass into butanol. Enzymatic saccharification of pretreated oil palm empty fruit bunch (OPEFB) by cellulase produced 31.58 g/l of fermentable sugar. This saccharification was conducted at conditions similar to the conditions required for ABE fermentation. The simultaneous process by Clostridium acetobutylicum ATCC 824 produced 4.45 g/l of ABE with butanol concentration of 2.75 g/l. The butanol yield of 0.11 g/g and ABE yield of 0.18 g/g were obtained from this simultaneous process as compared to the two-step process (0.10 g/g of butanol yield and 0.14 g/g of ABE yield). In addition, the simultaneous process also produced higher cumulative hydrogen (282.42 ml) than to the two-step process (222.02 ml) after 96 h of fermentation time. This study suggested that the simultaneous process has the potential to be implemented for the integrated production of butanol and hydrogen from lignocellulosic biomass.  相似文献   

13.
Pretreatments are crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars. In this light, switchgrass was subjected to 13 pretreatments including steam explosion alone (195 °C for 5, 10 and 15 min) and after impregnation with the following catalysts: Ca(OH)2 at low (0.4%) and high (0.7%) concentration; Ca(OH)2 at high concentration and higher temperature (205 °C for 5, 10 and 15 min); H2SO4 (0.2% at 195 °C for 10 min) as reference acid catalyst before steam explosion. Enzymatic hydrolysis was carried out to assess pretreatment efficiency in both solid and liquid fraction. Thereafter, in selected pretreatments the solid fraction was subjected to simultaneous saccharification and fermentation (SSF), while the liquid fraction underwent anaerobic digestion (AD). Lignin removal was lowest (12%) and highest (35%) with steam alone and 0.7% lime, respectively. In general, higher cellulose degradation and lower hemicellulose hydrolysis were observed in this study compared to others, depending on lower biomass hydration during steam explosion. Mild lime addition (0.4% at 195 °C) enhanced ethanol in SSF (+28% than steam alone), while H2SO4 boosted methane in AD (+110%). However, methane represented a lesser component in combined energy yield (ethanol, methane and energy content of residual solid). Mild lime addition was also shown less aggressive and secured more residual solid after SSF, resulting in higher energy yield per unit raw biomass. Decreased water consumption, avoidance of toxic compounds in downstream effluents, and post process recovery of Ca(OH)2 as CaCO3 represent further advantages of pretreatments involving mild lime addition before steam explosion.  相似文献   

14.
Macroalgae have not met their full potential to date as biomass for the production of energy. One reason is the high cost associated with the pretreatment which breaks the biomass's crystalline structure and better exposes the fermentable sugars to anaerobes. In the attempt to overcome this technological barrier, the performance of a Hollander beater mechanical pretreatment is assessed in this paper. This pretreatment has been applied to a batch of Laminariaceae biomass and inoculated with sludge from a wastewater treatment plant. The derived biogas and methane yields were used as the responses of a complex system in order to identify the optimal system input variables by using the response surface methodology (RSM). The system's inputs considered are the mechanical pretreatment time (5–15 min range), the machine's chopping gap (76–836 μm) and the mesophilic to thermophilic range of temperatures (30–50 °C). The mechanical pretreatment was carried out with the purpose of enhancing the biodegradability of the macroalgal feedstock by increasing the specific surface area available during the anaerobic co-digestion. The pretreatment effects on the two considered responses are estimated, discussed and optimized using the tools provided by the statistical software Design-Expert v.8. The best biogas yield of treated macroalgae was found at 50 °C after 10 min of treatment, providing 52% extra biogas and 53% extra methane yield when compared to untreated samples at the same temperature conditions. The highest biogas rate achieved by treating the biomass was 685 cc gTS1, which is 430 cc gTS1 in terms of CH4 yield.  相似文献   

15.
BackgroundHydrolysates derived from lignocellulosic material contain a complex mix of inhibitory compounds dependant on the type of biomass and the pre-treatment process employed. These inhibitors prevent the subsequent fermentation of available sugars by yeast into ethanol.ResultsInhibitory compounds normally work synergistically to reduce metabolic output, rates of budding and viability; however, it was observed in this study that the presence of weak acids actually improved tolerance to hydroxymethyl furfural (HMF) and furfural in Saccharomyces cerevisiae. The protective role of weak acids in HMF or furfural stressed cells was only apparent with relatively low concentrations of acetic acid (20 mM), however, there was an improvement in glucose utilisation and ethanol production when compared with HMF or furfural stressed cells. Focusing on HMF stressed cells quantitative trait loci (QTL) analysis identified a region on chromosome VI related to the enhanced tolerance to HMF in the presence of acetic acid. Two genes FET5 and HAC1 located in this region were up-regulated under the combined stress of acetic acid with HMF stress and null mutants exhibited a return to HMF sensitivity.ConclusionsPresence of acetic acid helps yeast cells overcome HMF stress, QTL analysis identified two genes on a loci on chromosome VI, knocking out these genes returns the cell to HMF sensitivity.  相似文献   

16.
The potential of sweet sorghum as an alternative crop for ethanol production was investigated in this study. Initially, the enzymatic hydrolysis of sorghum grains was optimized, and the hydrolysate produced under optimal conditions was used for ethanol production with an industrial strain of Saccharomyces cerevisiae, resulting in an ethanol concentration of 87 g L−1. From the sugary fraction (sweet sorghum juice), 72 g L−1 ethanol was produced. The sweet sorghum bagasse was submitted to acid pretreatment for hemicellulose removal and hydrolysis, and a flocculant strain of Scheffersomyces stipitis was used to evaluate the fermentability of the hemicellulosic hydrolysate. This process yielded an ethanol concentration of 30 g L−1 at 23 h of fermentation. After acid pretreatment, the remaining solid underwent an alkaline extraction for lignin removal. This partially delignified material, known as partially delignified lignin (PDC), was enriched with nutrients in a solid/liquid ratio of 1 g/3.33 mL and subjected to simultaneous saccharification and fermentation (SSF) process, resulting in an ethanol concentration of 85 g L−1 at 21 h of fermentation. Thus, from the conversion of starchy, sugary and lignocellulosic fractions approximately 160 L ethanol.ton−1 sweet sorghum was obtained. This amount corresponds to 13,600 L ethanol.ha−1.  相似文献   

17.
A standard ISO Life Cycle Assessment study was carried out to evaluate the environmental sustainability of electricity production from an anaerobic digestion (AD) plant using a mixture of dedicated energy crops, agricultural residues and livestock effluents as input materials. The functional unit was 1 MJ of electricity. System boundaries were from cradle to grave and covered all the phases from energy crops cultivation to the production of biogas and its use in a Combined Heat and Power plant to produce electricity. Liquid and solid digestate storage and spreading on agricultural land were included. Primary data were collected from the AD plant for all the above phases. Since heat produced is used only internally, no allocation was applied in the study. As regards digestate management, CH4 emissions were calculated from literature, whereas four literature methods were applied for calculation of nitrogen emissions with the goal to perform a sensitivity analysis on LCA results. ILCD Handbook impact assessment methodologies were used. Results show that the main hotspots are energy crops cultivation and the management of digestate, mainly because of both nitrogen and methane emissions, affecting Global Warming, Acidification, Marine and Freshwater Eutrophication. Finally, a detailed Monte Carlo analysis, was carried out to evaluate the results uncertainty. The study represents the state of the art about the environmental performance of the AD plant with the use of sensitivity and uncertainty analysis, which both improve the reliability of results, and allows drawing general conclusions on how to mitigate the environmental impacts of AD process.  相似文献   

18.
Cellulosic ethanol made from cellulosic biomass is a promising alternative to petroleum-based transportation fuels. Enzymatic hydrolysis is a crucial step in cellulosic ethanol production. In order to better understand the mechanisms of enzymatic hydrolysis, relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield have been studied extensively. However, the literature contains inconsistent reports. This paper presents an analysis of the inconsistent reports on the relationships in the literature. It discusses the differences in the reported experiments from five perspectives (biomass category, particle size definition, sugar yield definition, biomass treatment procedure, and particle size level). It also proposes future research activities that can provide further understanding of the relationships.  相似文献   

19.
Wheat straw is a potential cellulosic feedstock for bioethanol. This study was conducted to evaluate straw yield potential and its relationship with grain yield for wheat (Triticum spp.) grown in the United States. The specific objective was to determine if differences in straw yield and harvest index (HI) exist between and within regions and/or wheat classes. Using on-going variety performance trials in eight states, a total of 255 varietal trial entriess from five classes of wheat were surveyed for above-ground biomass. Averaged over all wheat classes and regions the HI was 0.45. Soft red winter wheat in Kentucky had, on average, the highest HI and lowest straw yield among regions and wheat classes. Soft white winter wheat under irrigation in the Pacific Northwest produced the highest straw yield. Hard red winter wheat in the southern plain states of Texas and Oklahoma had, on average, the lowest HI. Differences in the amount of precipitation and cultivars were the major contributors to the variation detected within wheat classes. The amount of wheat straw available as cellulosic feedstock in a state or wheat class can be estimated using the grain yield estimates provided by the National Agricultural Statistics Service and the class specific HI.  相似文献   

20.
Twelve maize genotypes, were agronomically evaluated and their stover hydrothermally pretreated in a temperature range of 210–225 °C to assess the effects of genotype and pretreatment severity on stover recalcitrance toward bioethanol conversion. Maize genotypes exhibited significant variation for biomass yield and all agronomic evaluated, while among all cell wall constituents measured in the unpretreated stover, only ash content showed differences among genotypes. The pretreatment severities assayed impacted most stover compositional traits, and the glucose recovered after enzymatic hydrolysis displayed a similar profile among genotypes with similar genetic background. Harsher pretreatment conditions maximized the potential cellulosic bioethanol production (208–239 L/t), while the mildest maximized the bioethanol from the hemicellulosic hydrolysates (137–175 L/t). Consequently, when both pentose and hexose sugars were considered, the total potential bioethanol produced at the lowest and highest pretreatment temperatures was similar in all genotypes (292–358 L/t), indicating that the lowest temperature (210 °C) was the optimal among all assayed. Importantly, the ranking of genotypes for bioethanol yield (L/ha) closely resembled the ranking for stover yield (t/ha), indicating that breeding for biomass yield would increase the bioethanol production per hectare regardless of the manufacturing process. Similarly, the genetic regulation of corn stover moisture is possible and relevant for efficient energy production as biomass moisture has a potential impact on stover transportation, storage and processing requirements. Overall, these results indicate that local landrace populations are important genetic resources to improve cultivated crops, and that simultaneous breeding for production of grain and stover bioethanol is possible in corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号