首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079–2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.  相似文献   

2.
Depleting fossil fuel sources necessitate renewable substitutes for petroleum-based co-products. Fast pyrolysis of biomass generates a hydrocarbon liquid (“bio-oil”) amenable to distillation and/or hydrotreatment into hydrocarbon blendstocks. Biorefineries must add value through parallel generation of co-products. We demonstrated a straightforward conversion of bio-oil distillate bottoms into calcined coke. The solid residue was subjected to calcination at 1200 °C for 1 h under N2 atmosphere. The dry calcined product contained 96–99% carbon, was free from sulfur (<0.05% mass fraction), and contained a mass fraction of 0.2–1.1% ash. XRD confirmed steady increases in crystallite size with both devolatilization and calcination. FTIR spectroscopy indicated a loss of functional groups after calcination, except two broad peaks representing C–C and C–O. Temperature programmed oxidation (TPO) of the bottoms before and after calcination illustrates an increasing structural order via the increasing temperature(s) necessary to oxidize the samples. SEM images reveal bubbly morphologies similar to the industrially-favored sponge coke. The electrical resistivity of calcined coke samples measured to be < 1.6 mΩ-m, which closely falls in line with specifications for carbon anodes. Due to the aforementioned qualities and biomass origin, biorenewable calcined coke is an improved alternative to petroleum coke and can find application in carbon anodes, steel carburization, and graphite synthesis.  相似文献   

3.
Hydrogen-rich syngas production from the catalytic steam reforming of bio-oil from fast pyrolysis of pinewood sawdust was investigated by using La1−xKxMnO3 perovskite-type catalysts. The effects of the K substitution, temperature, water to carbon molar ratio (WCMR) and bio-oil weight hourly space velocity (WbHSV) on H2 yield, carbon conversion and the product distribution were studied in a fixed-bed reactor. The results showed that La1−xKxMnO3 perovskite-type catalysts with a K substitution of 0.2 gave the best performance and had a higher catalytic activity than the commercial Ni/ZrO2. Both high temperature and low WbHSV led to higher H2 yield. However, excessive steam reduced hydrogen yield. For the La0.8K0.2MnO3 catalyst, a hydrogen yield of 72.5% was obtained under the optimum operating condition (T = 800 °C, WCMR = 3 and WbHSV = 12 h−1). The deactivation of the catalysts mainly was caused by coke deposition.  相似文献   

4.
In the present study, reduced pressure distillation was performed to obtain distilled bio-oil from fast pyrolysis bio-oil. The experiments were completed at temperature 80 °C with a residual pressure of 15 mmHg. The distilled bio-oil yields of 61 wt% from reduced pressure distillation of fast pyrolysis bio-oil were obtained. The oxygen contents of the distilled bio-oil is 9.2 wt% and the distilled bio-oil has lower content of oxygen than the fast pyrolysis bio-oil. For this reason, compared with the fast pyrolysis bio-oil, the distilled bio-oil has higher heating value, lower corrosivity and better stability. The heating value of distilled bio-oil is 34.2 MJ/kg, which is about 2 times of that of fast pyrolysis bio-oil. It is found that the distilled bio-oil stored at 60 °C results in a weight loss of about 0.3% for mild steel and the distilled bio-oil’s viscosity hardly increases during storage. These properties of distilled bio-oil make it more suitable for fuel oil use or as a source of chemicals than fast pyrolysis bio-oil.  相似文献   

5.
《能源学会志》2020,93(2):605-613
The Fe-, Co-, Cu-loaded HZSM-5 zeolites were prepared via impregnation method. The upgrading by catalyst on biomass pyrolysis vapors was conducted over modified zeolites to investigate their catalytic upgrading performance and anti-coking performance. The Brønsted acid sites amount on Cu-,Co-loaded HZSM-5 decreased sharply, while that of Lewis both increased. The yield of liquid fraction and refined bio-oil over metal loaded ZSM-5 catalysts decreased, while that of char almost kept constant. The physical property of refined bio-oil was promoted in terms of pH value, dynamic viscosity and higher heating value (HHV). FT-IR analysis revealed that the chemical structure of refined bio-oil obtained over Fe-, Co-, Cu-loaded HZSM-5 zeolites was highly similar. The yield of monocyclic aromatic and aliphatic hydrocarbon over Fe-,Co-loaded HZSM-5 were boosted by around 2.5 times compared with original ZSM-5 zeolites. Data analysis revealed that Cu/HZSM-5 presented the worst deoxygenation ability. The anti-coking capability of Fe/HZSM-5 was obviously better, i.e., the coke content showed an approximate decrease of 38%. Thus, this study provided an efficient Fe/HZSM-5 catalysts for preparation of bio-oil derived from catalytic upgrading of biomass pyrolysis vapor.  相似文献   

6.
Hydrogen production was studied in the catalytic steam reforming of a synthetic and a real aqueous fraction of bio-oil. Ni/Al coprecipitated catalysts with varying nickel content (23, 28 and 33 relative atomic %) were prepared by an increasing pH technique and tested during 2 h under different experimental conditions in a small bench scale fixed bed setup. The 28% Ni catalyst yielded a more stable performance over time (steam-to-carbon molar ratio, S/C = 5.58) at 650 °C and a catalyst weight/organic flow rate (W/morg) ratio of 1.7 g catalyst min/g organic. Using the synthetic aqueous fraction as feed, almost complete overall carbon conversion to gas and hydrogen yields close to equilibrium could be obtained with the 28% Ni catalyst throughout. Up to 63% of overall carbon conversion to gas and an overall hydrogen yield of 0.09 g/g organic could be achieved when using the real aqueous fraction of bio-oil, but the catalyst performance showed a decay with time after 20 min of reaction due to severe coke deposition. Increasing the W/morg ratio up to 5 g catalyst min/g organic yielded a more stable catalyst performance throughout, but overall carbon conversion to gas did not surpass 83% and the overall hydrogen yield was only ca. 77% of the thermodynamic equilibrium. Increasing reaction temperatures (600–800 °C) up to 750 °C enhanced the overall carbon conversion to gas and the overall yield to hydrogen. However, at 800 °C the catalyst performance was slightly worse, as a result of an increase in thermal cracking reactions leading to an increased formation of carbon deposits.  相似文献   

7.
Catalytic reforming of three typical bio-oil model compounds, phenol, acetic acid and hydroxyacetone, has been carried out over a Ni/nano-Al2O3 catalyst. Al2O3, in the form of nano-rods of length approximately 40 nm, was selected as the catalyst support. The catalyst showed superior performance in terms of activity and stability. The conversions for phenol, acetic acid and hydroxyacetone reached 84.2%, 98.2% and 98.7%, respectively, at the reaction temperature of 700 °C. The corresponding hydrogen yields were 69%, 87% and 97.2%. The catalyst maintained its high reactivity for more than 10 h in the catalytic reforming of three model compounds. The influences of steam to carbon ratio, catalyst loading and Ni content in the catalyst on the reforming performance were also investigated. In addition, the possible decomposition pathways for phenol, acetic acid and hydroxyacetone are proposed.  相似文献   

8.
Treatment of zirconium oxide with sulphate ions forms a highly acidic, or superacidic catalyst; sulphated zirconia. This catalyst has been found previously to be highly applicable to a range of reactions including acylation alkylation, isomerization, cracking and dehydration at temperatures in the range 150–200°C. These relatively low-temperature reactions offer potential in the field of bio-oil catalytic upgrading. Here zeolite catalysts have been used predominantly, but with associated problems due to the high reaction temperatures related with their use. The paper describes the processes involved in optimization of a process for the catalytic upgrading of a bio-oil produced by slow pyrolysis of pine wood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Lignocellulose, having great potential to become substitute for fossil fuels, can sustainably produce fuels and chemical resources. So far, the main techniques used to generate fuels and high value-added chemicals from lignocellulose have been catalytic hydrolysis and hydrogenation. In this study, MoS2 and CoS2/MoS2 catalysts were used in the hydrogenation of rice straw. In the obtained bio-oil it was detected that the main components were esters and phenols, which was the important part of transportation fuels and chemicals. The results of our study demonstrated that the MoS2 and CoS2/MoS2 samples could be used as effective catalysts for degrading lignocellulose to obtain important chemicals.  相似文献   

10.
The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed.Comparisons betweennumerical simulation and experiments showed a basic agreement.The combustion process of homogeneouscharge compression ignition(HCCI)engine whose piston surface has been coated with catalyst(rhodium andplatinum)was numerically investigated.A multi-dimensional model with detailed chemical kinetics was built.The effects of catalytic combustion on the ignition timing,the temperature and CO concentration fields,and HC,CO and NO_x emissions of the HCCI engine were discussed.The results showed the ignition timing of the HCCIengine was advanced and the emissions of HC and CO were decreased by the catalysis.  相似文献   

11.
The impact of fractional hydrogen preconversion on the subsequent homogeneous ignition characteristics of fuel-lean (equivalence ratio φ = 0.30) H2/O2/N2/CO2 mixtures over platinum was investigated experimentally and numerically at pressures of 1, 5 and 8 bar. Experiments were performed in an optically accessible channel-flow reactor and involved Raman measurements of major species over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical. Simulations were carried out with a 2-D elliptic code that included detailed hetero-/homogeneous chemistry. The predictions reproduced the LIF-measured onset of homogeneous ignition and the Raman-measured transport-limited catalytic hydrogen consumption. For 0% preconversion and wall temperatures in the range 900 K ? Tw ? 1100 K, homogeneous ignition was largely suppressed for p ? 5 bar due to the combined effects of intrinsic gas-phase hydrogen kinetics and the competition between the catalytic and gas-phase pathways for fuel consumption. A moderate increase of preconversion to 30% restored homogeneous combustion for p ? 5 bar, despite the fact that the water formed due to the upstream preconversion inhibited homogeneous ignition. The catalytically-produced water inhibited gas-phase combustion, particularly at higher pressures, and this kinetic inhibition was exacerbated by the diffusional imbalance of hydrogen that led to over-stoichiometric amounts of water in the near-wall hot ignitable regions. Radical adsorption/desorption reactions hindered the onset of homogeneous ignition and this effect was more pronounced at 1 bar. On the other hand, over the post-ignition reactor length, radical adsorption/desorption reactions significantly suppressed gas-phase combustion at 5 and 8 bar while their impact at 1 bar was weaker. By increasing hydrogen preconversion, the attained superadiabatic surface temperatures could be effectively suppressed. An inverse catalytically stabilized thermal combustion (CST) concept has been proposed, with gas-phase ignition achieved in an upstream porous burner via radiative and heat conduction feedback from a follow-up catalytic reactor. This arrangement moderated the superadiabatic surface temperatures and required modest or no preheat of the incoming mixture.  相似文献   

12.
Various anode-supported solid oxide fuel cells (SOFC), based on 10 mol% Dy-doped La2Mo2O9 (LDM) electrolyte, are prepared analytically and operated under single chamber conditions to explore the connections between electrode and power performance. The cathode of tested SOFCs is compositionally graded with three composites of samarium strontium cobaltite and Gd-doped ceria (GDC) to relax the thermal stress, because of sizable thermal expansion differences above 400 °C. We focus the research attention on varying the anode pore structure and composition to promote the power performance in methane/air mixture at 700 °C. For the one-layer support of GDC+NiO+LDM anode, addition of 10 wt% graphite minimizes its mass transport resistance through creating 8–5 μm long and ∼1 μm wide slit-shaped pores. The graphite pore former raises the peak power value by 80 mW cm−2. Adopting a more porous and active outer layer, the double-layer support further enhances the cell power. The peak power was first raised by 48 mW cm−2, using an outer layer that was prepared with 63 wt% NiO. Dosing 3% Pd on this outer layer uplifts another 59 mW cm−2. In this study, with an improved anode, the peak power value reaches 437 mW cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号