首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、Thermo-Calc热力学计算、物理化学相分析和高温(700℃)拉伸试验,研究了Ti微合金化对25Cr3Mo3NiNbZr钢碳化物析出行为、微观组织和高温强度的影响。结果表明,由于添加了微合金化元素Ti,试验钢的原奥氏体晶粒由50μm细化至20μm,高温(700℃)抗拉强度提升176 MPa,高温屈服强度提升54 MPa。钢中MC型碳化物析出量明显增多,数密度由4.36×1015 m-3提升至5.34×1019 m-3,且5~10 nm的MC型碳化物占比由81.8%提升至90.1%,同时增加了1~5 nm的MC析出相。此外,Ti元素的添加提高了MC型碳化物的热稳定性,粗化速率由0.301 978 nm·s-1/3降低到0.169 049 nm·s-1/3。添加Ti元素后,试验钢中的MC型碳化物更细小,分布更密集,热稳定性更好,是试验钢高温强度提高的主要原因。  相似文献   

2.
对商业纯钨和铜铬锆合金在900~980℃进行压力80 MPa、时间2 h的真空扩散焊(diffusion welding,DFW)试验,并对扭转圈数为5~20圈的高压扭转(high-pressure torsion,HPT)变形钨和铜合金进行900℃真空扩散焊试验,获得了界面连接结合良好、力学性能优良的钨铜复合材料。借助OM、EDS和XRD,对比分析了高压扭转引入的晶体缺陷对扩散焊后钨和铜元素扩散、显微组织和显微硬度的影响规律。结果表明,随着真空扩散焊温度升高,钨和铜的元素扩散深度分别由(0.4±0.1)μm和(0.9±0.1)μm逐渐提升至(0.9±0.1)μm和(1.7±0.2)μm,高温导致晶粒组织异常长大,显微硬度显著下降。HPT变形引入的高密度位错和超细晶组织促进扩散焊过程中的原子扩散与迁移,20圈变形扩散焊试样的钨和铜元素扩散深度达到(2.4±0.1)μm和(3.1±0.2)μm,较初始态提升了5倍和2.4倍;钨变形组织在扩散焊后得到有效保留,条带状晶粒有限长大至62μm×25μm,位错密度约为1.46×1014 m-2,较初始态...  相似文献   

3.
以固溶-时效和热机械处理(TMT)(固溶-过时效-热压缩)-固溶-时效加工的超高强铝合金Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr为实验对象,分别采用电子背散射衍射(EBSD)、X射线衍射(XRD)、硬度测试和拉伸试验研究合金组织晶粒晶界特征分布、内部的位错密度和力学性能,并定量计算位错强化和晶界强化值。结果表明:热机械处理对合金晶粒细化影响不显著,平均晶粒尺寸从7.30μm减小至6.04μm,晶界角度从21.45?下降到21.04?,小角度晶界比例从0.588下降到0.546;TMT使峰时效硬度从2146 MPa(120℃/48 h)提高到2268 MPa(100℃/48h),但对强度影响较小,二者屈服强度均为600 MPa左右,拉伸断口均为沿晶和撕裂混合断裂。合金分别经固溶及TMT-固溶后,晶界位错密度均为零,TMT使位错强化与晶界强化的总强化从58.8 MPa下降到57.4 MPa。  相似文献   

4.
采用光学显微镜、扫描电镜、电子背散射衍射、能谱仪和X射线衍射等研究了回火时间对BS960E钢快速加热淬火后组织与性能的影响。结果表明:BS960E钢淬火后组织为板条状马氏体,其原始奥氏体平均晶粒尺寸为5.69μm,位错密度为4.02281×1015 cm-2。随着回火时间的延长,马氏体板条结构逐渐分解;回火2 min时仍存在部分板条组织,有效晶粒尺寸(马氏体板条块)为2.47μm,位错密度急剧下降至9.48079×1014 cm-2;回火15和30 min时马氏体板条开始粗化,小角度晶界密度占比降低,此时有效晶粒尺寸分别为2.57和2.59μm,位错密度分别为7.80957×1014和6.75406×1014 cm-2;回火60 min时,马氏体板条块合并明显,大角度晶界密度及占比下降,有效晶粒尺寸粗化达到2.99μm,位错密度降低至5.19655×1014 cm-2。碳化物的析出位置可分为...  相似文献   

5.
利用SEM、霍普金森杆和拉伸试验机等仪器对3种1000 MPa级高破碎性钢的组织、静态和动态力学性能进行了研究,并拟合了Johnson-Cook动态本构模型。结果表明:3种试验钢均有明显的应变硬化特征,应变速率由0.001 s-1提高至8000 s-1时,1号钢的屈服强度增加546 MPa;2号钢的屈服强度增加434 MPa;3号钢的屈服强度增加667 MPa。3种试验钢也存在明显的温度效应,1号 钢微观组织中未溶碳化物的存在使晶格阻力增大,有效的阻碍了位错运动,500 ℃高温条件下,1号钢的屈服强度为450 MPa,明显高于2号钢和3号钢的屈服强度330 MPa和310 MPa。3种高破碎性试验钢的 Johnson-Cook 方程分别为:σe=(1008+1309.04(εp)0.679 97)(1+0.1498lnε·*)(1-T*1.188 53);σe=(1000+1214.321(εp)0.6112)(1+0.480 15lnε·*)(1-T*1.263 05);σe=(1008+1334.871(εp)0.610 88)(1+0.116 18lnε·*)(1-T*0.992 47)。  相似文献   

6.
采用真空电弧熔炼方法制备Co30Cr30(FeNi)40-xWx(x=0~8%(摩尔分数),分别简化为HWO~HW8)高熵合金。研究铸态和退火态合金的显微组织和拉伸性能。结果表明,HW2和HW4具有单一的FCC相。随着W含量和退火温度的增加,细小粒状μ相的面积分数增加且分散在FCC基体中。软FCC基体和硬μ相构成应变不相容的异质结构。随着W含量从0增加到8%(摩尔分数),屈服强度和抗拉强度分别从278和629 MPa提高到530和839 MPa,应变维持在33%。退火后的HW8表现出优异的屈服强度(810 MPa)和抗拉强度(1087 MPa)。屈服强度的提高归因于固溶、沉淀和背应力强化。异质结构中产生的背应力强化作用诱导高硬化行为,在提高抗拉强度和塑性方面发挥着主导作用。  相似文献   

7.
利用透射电镜研究铝合金7050搅拌摩擦焊后各区微观结构演变。结果表明:热影响区位错开始滑移;热-力影响区位错发生交滑移或攀移,位错密度降低;焊核区晶内有少量位错。热影响区强化相严重粗化,热-力影响区强化相先固溶后重新析出,在晶内均匀分布,位错线成为强化相优先析出的核心;焊核区母材中固有的高温稳定相以及破碎的基体材料颗粒成为强化相优先析出的核心,强化相数量很少。  相似文献   

8.
采用不同的工艺参数对5083-OT与6005A-T6铝合金进行搅拌摩擦焊焊接。通过金相分析、XRD分析、拉伸性能等方法,研究焊接速度、轴肩直径及搅拌头偏移量等参数对5083/6005A异种铝合金搅拌摩擦焊接头组织与性能的影响。结果表明:5083/6005A异种铝合金搅拌摩擦焊界面无明显脆性金属间化合物生成;焊核区组织发生动态再结晶,形成细小的等轴晶组织;前进侧热机影响区受到的机械搅拌作用力大于后退侧,晶粒变形大于后退侧热机影响区;热影响区组织仅受到热循环的作用,晶粒有粗化现象;随着偏移量的增加,使得焊核区和后退侧热机影响区硬度值降低,最低值出现在6005A侧热影响区,其抗拉强度、屈服强度、延伸率均逐渐减小,当焊接速度为600 mm/min、轴肩直径为12 mm、偏移量为0 mm时接头性能最好:抗拉强度为245 MPa,屈服强度为165 MPa,延伸率为5.67%。  相似文献   

9.
采用光学显微镜、扫描电镜和透射电镜对双层卷焊钢管高温退火前后的显微组织、析出相和位错进行了研究,探讨了双层卷焊钢管的退火软化机理。结果表明,高温退火有效改善了双层卷焊钢管的塑性(A50>40%),降低了其屈服强度(Rp0.2<150 MPa)。退火前后基体中的析出相类型主要为尺寸0.05~2 μm的TiN、Ti(CN)、TiS、Ti4C2S2、Fe3C,以晶内析出为主,分布稀疏。在退火过程中TiS向Ti4C2S2的转变消耗了铁素体基体中的间隙原子,而使基体净化,基体中析出相促进回复与再结晶和显著降低基体中的位错密度是双层卷焊钢管退火软化的根本原因。  相似文献   

10.
分别采用20、25和30 J脉冲激光冲击TC17钛合金,研究其微观组织演变、表面形貌及粗糙度变化、残余应力分布以及室温拉伸性能。研究结果表明:25 J激光冲击强化后,冲击影响层α相晶粒平均尺寸由激光冲击前的11.17μm减小到6.93μm,晶体内部产生高密度位错、孪晶以及层错缺陷,位错密度由冲击前的8.11×10~(13) m~(-2)增加到3.59×10~(14) m~(-2)。20,25,30 J激光冲击强化,试样表面粗糙度减小(0.922、0.537、0.305μm),表面残余应力增大(–213、–296、–774 MPa)。激光冲击强化后TC17钛合金屈服强度提升30~70 MPa,激光冲击强化诱导晶粒细化对TC17钛合金的抗拉强度影响较小。  相似文献   

11.
采用热压缩试验和电子显微分析方法研究Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr (质量分数,%)合金的变形行为和显微组织特征。结果表明,在最大加工效率条件(673 K,0.01 s-1)下变形时,Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr合金的位错密度分别为2.68×1016、8.93×1016和6.1×1017 m-2;其动态再结晶分数分别为19.8%、15.0%和12.7%。中心点平均取向差(KAM)分析表明,通过添加Zr或Sc+Zr,Al-Mg合金晶界附近的位错密度增加。此外,基于动态材料模型(DMM)建立的热加工图表明,添加Zr或Sc+Zr能减小Al-Mg合金的低温不稳定域的范围,但会增大高温和高应变不稳定域的范围。实验结果进一步证明,在变形条件下,仅Al-6.00Mg-0.25Sc-0.10Zr合金在773 K和1 s-1时开裂。  相似文献   

12.
应变速率对DP780钢动态拉伸变形行为的影响   总被引:2,自引:0,他引:2  
利用电液伺服高速试验机对DP780钢进行不同应变速率下的拉伸变形,结合SEM和TEM等手段,研究了应变速率对DP780钢拉伸性能及变形行为的影响规律及机制.结果表明,在较低应变速率(<100 s-1)条件下,随应变速率增加,DP780钢的强度、塑性等力学性能均未见显著变化.当应变速率超过101 s-1后,DP780钢的强度和应变硬化指数n明显提高;塑性在3×101-5×102 s-1范围内出现大幅度增加的现象.高应变速率的变形过程中,铁素体基体中位错运动速度加快,导致"近程阻力"增大,使DP780钢的变形抗力随应变速率的增加而增大.在应变速率达到3×101 s-1之后,铁素体中可动位错数量的大幅度提高,是DP780钢均匀伸长率和断后伸长率在3×101-5×102 s-1范围内得以明显增加的主要原因.DP780钢中的铁素体/马氏体界面是塑性变形过程中位错塞积、微裂纹形核及扩展的主要位置,而随应变速率的增加,铁素体基体中的形变强化程度增大,可降低铁素体基体与铁素体/马氏体界面之间塑性应变能差异,延缓铁素体/马氏体界面处微裂纹的形成和扩展,一定程度上提高了DP780钢非均匀塑性变形能力.  相似文献   

13.
使用搅拌摩擦焊对8mm厚的7075-T7351铝合金进行了单道平板对接。结果表明,在工艺参数为搅拌头旋转速度为1180r/min、焊接速度为37.5mm/min时,可获得较好的接头,抗拉强度达到390MPa,是母材强度的78%;7075-T7351铝合金搅拌摩擦焊接头微观组织为典型的搅拌摩擦焊接头组织,焊核区为细小的等轴晶,晶粒大小为6~7μm,母材组织中的强化相在此区域消失;接头显微硬度值分布趋势沿焊缝中心两侧基本对称,热机影响区-热影响区过渡区及焊核区硬度低于母材,是焊件的薄弱环节。  相似文献   

14.
惯性摩擦焊是一种连接异种金属理想的焊接方法,对铝合金/不锈钢采用惯性摩擦焊进行焊接,并详细研究了焊接接头的形貌、组织、界面成分和力学性能。结果表明,在惯性摩擦焊接头的界面处形成了很薄的金属间化合物(IMC)反应层,该反应层主要由Al、Fe元素组成,是富集Si元素的Fe Al3相。惯性摩擦焊接头组织由焊核区、完全动态再结晶区、热机械影响区和热影响区组成。完全动态再结晶区的晶粒尺寸小于0.1μm,它的平均宽度为5μm。接头的显微硬度(HV)最大值出现在不锈钢侧的完全动态再结晶区,其值为3958 MPa。惯性摩擦焊中,初始转速对接头的拉伸性能有显著影响。当初始转速为1200 r/min时,铝/钢惯性摩擦焊接头的最大抗拉强度为323 MPa,达到铝合金母材强度的92%。  相似文献   

15.
通过拉伸测试和显微分析方法研究搅拌摩擦焊Al-5.50Mg-0.45Mn和Al-5.50Mg-0.45Mn-0.25Sc-0.10Zr(质量分数,%)合金的显微组织和力学性能。结果表明,Al-Mg-Mn接头的屈服强度、抗拉强度和伸长率分别为(191±3) MPa、(315±1) MPa和(4.8±1.9)%,Al-Mg-Mn-Sc-Zr接头的分别为(288±5) MPa、(391±2) MPa和(3.4±1.0)%。相比Al-Mg-Mn接头,Al-Mg-Mn-Sc-Zr接头晶粒更细小、平均取向差角更低、小角度晶界百分数更高。两种接头的断裂位置均位于焊核区(WNZ),在该“最薄弱微区”内,Al3(Sc1-xZrx)纳米粒子的平均尺寸为(9.92±2.69) nm,可提供有效奥罗万和晶界强化,使Al-Mg-Mn接头的屈服强度提高97 MPa。  相似文献   

16.
采用零倾角搅拌摩擦焊工艺对6061T6和2024T4铝合金进行焊接,研究了不同焊接速度焊接接头的组织和力学性能。结果表明:零倾角搅拌摩擦焊接接头截面中部为焊核区,两侧为热机械影响区、热影响区和母材,焊核区可见明显的“S”线。接头的母材组织为长条状α铝晶粒,焊核区为细小的等轴晶,热机械影响区呈弯曲变形的晶粒,热影响区组织与母材组织类似。接头截面硬度分布呈“W”形,最低硬度位于热机械影响区和热影响区结合处。随着焊接速度的增大,焊核区硬度值呈增大趋势,同时接头软化区范围逐渐缩小。接头的抗拉强度随着焊接速度的增大呈先增后减的趋势,而伸长率却呈现逐渐降低的趋势。焊接速度为900 mm/min时的强度最高,为263.62 MPa,接头断口为典型的韧窝状断口。  相似文献   

17.
采用低温粉末冶金及热挤压工艺制备了具有超细晶组织的0.1%CNTs/AZ91 (质量分数)镁基复合材料。通过SEM、XRD、TEM对镁基复合材料的微观组织进行了表征,并对其室温力学性能进行测试。结果表明:CNTs在复合材料中分布均匀,CNTs的加入使得复合材料的晶粒尺寸从0.552μm细化到0.346μm,并促进了β相的析出,同时弱化了基面织构。复合材料的抗压强度和屈服强度分别达到了617和445 MPa,较基体提高了8.8%和7.2%;其抗拉强度和屈服强度分别达到了393和352 MPa,与基体相比分别提高了4.5%和6.0%。对强化机制进行分析,发现细晶强化和载荷传递是0.1%CNTs/AZ91复合材料的主要强化机制。  相似文献   

18.
采用搅拌摩擦焊工艺对3mm厚0Cr18Ni9不锈钢板进行了对接焊接。焊接接头内形成了焊核区、热力影响区和热影响区三个区域。焊核区由动态再结晶组织构成;热力影响区内的组织发生了不同程度的变形;热影响区由不完全再结晶组织构成。焊核区发生了明显的加工硬化现象,其显微硬度(HV)与母材相比提高了22%。在搅拌头旋转速度600r/min、焊接速度70mm/min下,接头的拉伸强度最高,达到412MPa。  相似文献   

19.
采用超声波冲击方法,对轨道客车转向架焊接构架用S355J2W+N耐候钢对接焊接接头进行了消应力处理,然后对焊态和超声波冲击态的两类焊接接头,分别进行了拉伸试验和指定寿命为1.0×106,2.0×106,3.0×106,4.0×106,6.0×106和1.0×107次共6种次数的循环脉动拉伸疲劳试验。试验结果表明:经超声波冲击处理后,焊接接头的屈服强度由272 MPa提高到了428 MPa,提高了57.4%;平均抗拉强度从408.5 MPa提高到了530.7 MPa,提高了29.9%;指定寿命为2.0×106,3.0×106,4.0×106,6.0×106和1.0×107次循环脉动拉伸疲劳试验后的中值疲劳极限分别提高了54.3%,27.2%,45.4%,74.5%和89.2%,1.0×106次循环脉动拉伸疲劳试验未断裂。超声波冲...  相似文献   

20.
研究了高焊接速度2 000 mm/min下6 mm厚6082-T6铝合金搅拌摩擦焊接头的组织与力学性能。结果表明,在高焊接速度下,铝合金接头成形良好,焊核内部没有缺陷。焊核区“S”线呈现出不连续分布状态,焊核区晶粒尺寸细化至10μm,热影响区的沉淀相粗化受到明显抑制。接头的最低硬度值明显提高至72 HV,达到焊核区硬度水平(75 HV)。拉伸测试时,接头断裂于热影响区,抗拉强度为262 MPa,达到母材的85%,优于常规参数下接头强度。研究表明,对铝合金进行高焊接速度搅拌摩擦焊,不仅可以提高接头力学性能,而且可显著提高焊接生产效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号