首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用分离式霍普金森压杆系统对FeCoCrNiCx(x=0,0.08,0.2)高熵合金开展高应变速率动态压缩试验,绘制出材料在2 300~5 600 s-1应变速率范围内的真应力-真应变曲线,分析了应变速率对材料塑性的影响,并构建了材料的J-C本构关系。结果表明,在准静态与动态加载下,FeCoCrNiCx系高熵合金表现出明显的加工硬化行为,在高应变速率下表现出良好的塑性变形能力;FeCoCrNiCx系高熵合金随着应变速率的提高,合金的加工硬化指数不断增大,抵抗变形能力不断增强,并且对应变速率有较高的敏感性。  相似文献   

2.
对铸态AlCoCrFeNi2.1共晶高熵合金的拉伸强度、压缩强度以及折弯强度进行了测试和分析,同时通过原位拉伸实验对其断裂机理进行分析。结果表明:铸态AlCoCrFeNi2.1共晶高熵合金表现出优异的力学性能,其拉伸强度为1005 MPa,断裂应变为15.4%。合金的拉伸断裂形式为脆性断裂加韧性断裂的混合断裂模式,体心立方相B2发生脆性穿晶断裂形成解理面,面心立方相产生塑性变形,微孔不断汇聚长大最终断裂从而形成塑性断裂的韧窝形貌。通过原位拉伸实验,发现在单轴拉应力作用下,面心立方相首先产生塑性变形,而体心立方相不发生塑性变形,仅仅储存大量内应力,之后在体心立方相薄弱区形成微裂纹释放应力;伴随载荷持续增大在裂纹尖端产生应力集中效应,促使该裂纹不断扩展,同时又有新的微裂纹在附近产生;继续增大载荷微裂纹逐渐融合,形成主裂纹,伴随主裂纹扩展同时形成新的微裂纹;形成“生成微裂纹-扩展-聚合-形成主裂纹-进一步扩展”的循环,直至最终断裂。  相似文献   

3.
制备了一种中等密度(约8.0 g/cm3)的难熔高熵合金Ti0.5Zr1.5NbTa0.5Sn0.2(摩尔比),系统研究了热处理温度对合金组织结构和力学性能的影响。结果表明:铸态Ti0.5Zr1.5NbTa0.5Sn0.2合金组织为富Zr和富Ta bcc相以及晶内的板条状Zr5Sn3。随着热处理温度升高,富Ta bcc相体积分数逐渐减少,Zr5Sn3体积分数先增加后减少。当热处理温度为1400℃时,样品呈现近单相bcc结构。准静态条件下,系列样品均具有良好的压缩塑性变形能力;随着热处理温度的提高,合金屈服强度逐渐上升,1400℃热处理样品的屈服强度为1749 MPa。动态变形时,合金表现出明显的应变率强化效应,屈服强度显著增加,1400℃热处理样品的屈服强度达到2750 MPa,塑性变形量有所下降。强度随...  相似文献   

4.
采用真空电弧熔炼工艺制备了不同Al含量的AlxMo0.5NbTiVSi0.2(x=0.5,0.8,1.0,摩尔比)难熔高熵合金。研究了合金的相组成、微观组织、密度和力学性能。结果表明,AlxMo0.5NbTiVSi0.2高熵合金的微观组织为典型的树枝晶结构,均由BCC固溶体相和M5Si3金属间化合物相组成。Al含量的增加并未使得合金的相组成发生改变。合金BCC基体相富集Al、Mo和V元素,M5Si3相富集Ti和Si元素,Nb元素在两相中分布较为均匀。随Al含量增加,合金的密度从6.18 g/cm3降至5.86 g/cm3,硬度提升了13.7%,压缩屈服强度增加约332 MPa,增幅达到37%,抗压强度从1 073 MPa提高到1 457 MPa,断裂应变从13.6%增加到14.4%。合金力学性能的提升主要是通过固溶强化、细晶强...  相似文献   

5.
李珂  张艳  许波  王媛媛  陈景润  陆彦地  张静 《铸造》2023,(2):125-129
将Cr20Mn10Fe30Co30Ni10高熵合金均匀化、室温冷轧后,研究再结晶温度对其组织和性能的影响。结果表明:轧制态的合金相结构为FCC+HCP两相结构,900℃以下回复再结晶处理后,仍保留大量HCP相,随着再结晶温度的升高,HCP相逐渐减少,部分晶粒开始发生回复再结晶,强度降低;当温度达到900℃时,已经发生完全回复再结晶,HCP相消失,生成细小多边形等轴晶粒,塑性大幅提升。采用600℃中温回复再结晶可以获得异质组织结构,从而实现Cr20Mn10Fe30Co30Ni10高熵合金良好强韧性匹配。  相似文献   

6.
采用机械合金化法制备CoCrFeNiB0.05Ti0.6高熵合金粉末,通过粉末冶金法制备了CoCrFeNiB0.05Ti0.6高熵合金。随后将烧结试样分别在450、650、850℃退火处理12 h。利用X射线衍射仪分析CoCrFeNiB0.05Ti0.6高熵合金退火前后的相结构;通过SEM和EDS分析CoCrFeNiB0.05Ti0.6高熵合金退火前后的微观组织形貌和元素分布情况;通过HXD-1000维氏硬度计和WDW-200万能试验测试机测量试样维氏硬度和压缩强度。结果表明,烧结态合金主要为FCC相伴随少量的HCP和Laves相;随着退火温度升高,BCC与硼化物等新相相继生成,Cr元素由浅灰色树枝晶向深灰色枝晶间的扩散程度逐渐增大,B元素与其它元素构成新的硼化物。烧结态合金为树枝晶与枝晶间组织,退火后枝晶间组织占比增大,树枝晶减少。CoCrFeNiB0.05Ti0.6...  相似文献   

7.
采用透射电子显微镜和扫描电子显微镜的背散射电子衍射及电子隧道衬度成像技术研究了D022相强化型Ni2CoCrFeNb0.15高熵合金在单轴拉伸变形过程中的织构演化、变形亚结构特征、位错与析出相交互作用以及断裂行为。结果表明:位错的平面滑移主导了该合金的单轴拉伸变形,D022超点阵相是促进位错平面滑移的主要因素。因位错的平面滑移模式产生的平面滑移带随着应变量的增加,其密度随之增加,平均间距随之减小。变形过程中先形成{001}织构,然后{111}织构增强,最终获得典型的{001}和{111}拉伸织构。当合金在单独拉伸变形过程中达到最大应力时,晶界处萌生裂纹并扩展为断裂主裂纹,导致塑性变形失稳。  相似文献   

8.
研究了AlxMo0.5Nb0.5Ta0.5Ti1.5难熔高熵合金的微观组织结构和力学性能,从Al元素在该体系合金中固溶强化作用以及Al和过渡族元素的强键合作用两方面对合金性能变化进行了分析。结果表明,Al含量在0~0.75范围内,合金均呈BCC结构类型,随Al含量增加,合金的树枝状凝固组织逐渐细化,硬度增加。在室温条件下,低Al含量(x≤0.3)合金在压缩应变达70%不发生断裂,高Al含量(x≥0.4)合金则表现出明显脆性。在高温条件下,随Al含量增加,合金体系理论熔点降低,合金高温下压缩强度降低程度越来越大。  相似文献   

9.
采用Gleeble-3500热模拟试验机在变形温度为25~400℃、应变速率为0.01~10s-1和真应变为0.85的条件下,对1060Al/Al-Al2O3/1060Al层状铝基复合材料进行了热压缩试验,研究其热变形行为,建立了应变补偿的Arrhenius (SCA)、修正的Johnson-Cook (MJC)和修正的Zerilli-Armstrong (MZA) 3种本构模型,并对流变应力的预测值与实验值进行对比。结果表明,层状复合材料流变应力呈加工硬化型,并随温度升高或应变速率降低而降低;在100℃/0.5s-1、200℃/0.1s-1和300℃/0.1s-1条件下,层状复合材料组元层间变形较为协调;3种本构模型中,MZA模型的相关系数最高,R为0.99085、平均绝对相对误差最低,eAARE为0.046966,更适合描述1060Al/Al-Al2O3/1060Al层状铝基复合材料的热...  相似文献   

10.
采用Gleeble-3500热模拟试验机研究了Laves相NbCr2/Nb两相合金在变形温度为1000~1200℃和应变速率为0.001~0.1 s-1条件下的热变形行为,基于动态材料模型建立了合金的功率耗散图和加工图,分析了工艺参数对功率耗散效率和失稳参数的影响,并结合微观组织获得了最优工艺参数。结果表明,降低应变速率和提高变形温度,功率耗散效率和失稳参数总体均增大。根据加工图和微观组织确定出的Laves相NbCr2/Nb两相合金的流动失稳变形工艺参数范围大致为:1000~1100℃、0.004~0.1 s-1和1100~1200℃、0.016~0.1 s-1,对应的失稳形式为裂纹形成。适宜的热变形工艺参数范围为:1000~1100℃、0.001~0.002 s-1和1100~1200℃、0.001~0.01 s-1,其中最佳变形工艺参数分别为1050℃、0.001 s-1和1175℃、0.001 s...  相似文献   

11.
高熵合金是一种由多种合金元素以等原子比或近等原子比组成的新型金属材料,其独特的原子结构和合金设计理念使高熵合金具有优异的性能。在高熵合金中通过引入韧性的L12纳米析出相阻碍位错运动,不仅可以提高强度还可以保证良好的拉伸塑性,这种L12析出相强化的高熵合金引起了广泛关注。对于L12相析出强化高熵合金而言,调控析出相的大小、形貌、分布及体积分数对改善析出强化高熵合金的力学性能至关重要。基于此,本文回顾了合金成分的选择和热机械处理工艺参数,如时效温度、时效时间、塑性变形等对L12相的影响规律,总结设计新型L12相强化高熵合金的方法,并对L12相析出强化高熵合金的研究进行了综述和展望。  相似文献   

12.
采用真空电弧熔炼制备了Al0.5Nb1.5TiV2Zr0.5高熵合金,并研究了其微观组织、密度及力学性能。结果表明,Al0.5Nb1.5TiV2Zr0.5合金由为90.6%(体积分数)的体心立方相和9.4%(体积分数)的C14-Laves第二相组成。合金基体相富含Ti和V,第二相富含Al和Zr。合金的密度为6284 kg/m3,维氏硬度为5197.9 MPa。合金的屈服强度随温度升高而降低,由室温下1082.9 MPa降低到1073 K下的645.0MPa。压缩应变由室温下的27.20%降低到873 K下的14.94%,这与合金中原子间的相互作用力随温度升高而降低有关。在1073 K时合金应变超过50%,表现出良好的塑性而未发生断裂。压缩测试结果表明,合金韧脆转变温度在873~1073 K之间。  相似文献   

13.
对喷射态2050铝合金进行了温度为350~530℃,应变速率为0.01~10 s-1的热压缩实验,分析了试样表面开裂情况及其与应力-应变曲线间的关联性。结果表明,应变速率低于1 s-1时,变形温度越高、应变速率越低,试样表面越容易开裂。试样在应变速率为0.01 s-1、温度为470℃压缩时表面出现了肉眼可见的微裂纹;随着温度增加至530℃,试样开裂程度加剧。在温度为530℃时,随着应变速率由0.01 s-1增加至10 s-1,试样开裂程度先减小后增大,应变速率为1 s-1的试样开裂程度最小。应变速率一定时,不同温度下应力-应变曲线变化趋势基本一致,变形温度越低、应变速率越大,变形抗力越高,温度为350℃、应变速率为10 s-1时峰值应力最高,为119.8 MPa,温度为530℃、应变速率为0.01 s-1时峰值应力最低,为15.3 MPa。对比开裂与未开裂试样的应力-应变曲线,未发现试样表面开裂对应力-应变曲线造...  相似文献   

14.
郑祺风  吕威闫  邱克强 《铸造》2024,(2):143-149
利用经典高熵合金判据设计了一种非等摩尔比(Fe33Cr36Co15Ni15Ti1)96Al4高熵合金。利用X射线衍射仪、扫描电子显微镜、能谱仪、万能力学试验机和电化学工作站对合金的晶体结构、微观组织、元素分布、力学性能(压缩和拉伸性能)及腐蚀性能进行了研究。结果表明,(Fe33Cr36Co15Ni15Ti1)96Al4高熵合金为FCC+BCC双相结构,合金微观组织为枝晶组织,室温下合金抗压强度为743 MPa及超过50%的压缩应变,而拉伸屈服强度、抗拉强度、伸长率分别为591 MPa、984 MPa和15.8%,其断裂机制为韧性断裂。合金表现出优于304SS的耐蚀性,点蚀电位为846 mV,约是304SS的三倍。  相似文献   

15.
采用真空电弧熔炼制备了(Ti40-xHf10Tax)50(NiCu)50(x=0、1、5和10,at%)高熵记忆合金,通过扫描电镜(SEM)、X射线衍射(XRD)和室温循环压缩等研究了Ta含量与加载条件等对合金显微组织、力学性能、超弹性与稳定性等的影响。结果表明:铸态(Ti40-xHf10Tax)50(NiCu)50高熵记忆合金兼具优良的力学性能与超弹性,与现有2~4元Ti基记忆合金相比拥有较高的输出功;在预应变为15%时,Ta0、Ta1和Ta5合金的施加应力为1390.8、1591.2和2101.7 MPa,输出功为100.2、124.3和197.4 J/cm3。随Ta含量的增加,合金断裂强度和伸长率下降,但Ta1和Ta5合金的屈服强度与可回复应变增加,最大可回复应变分别为7.8%和9.4%,其中超弹性应变分别为4.0%和4.4%,加热后总可回复...  相似文献   

16.
采用非自耗真空熔炼炉制备了一组非等摩尔比的高熵合金(NiAl)63-xV20Cr17Bx(x=0、0.2、0.4、0.6、0.8和1.0,摩尔比),通过XRD、EPMA、万能材料试验机等手段研究了B含量对合金微观组织和力学性能的影响。结果表明,(NiAl)63V20Cr17合金为B2+BCC双相共晶结构,属于海藻状共晶枝晶,规则的片层共晶被不规则的片层共晶包围。随着B含量增加,(NiAl)63-xV20Cr17Bx合金的微观结构由片层状共晶结构(x=0)转变为亚共晶结构(x>0.4),纳米沉淀物(含M2B化合物)在初生相上析出。合金硬度先增加后减小,断裂强度和断裂应变持续增大。当x=0.8时,高熵合金具有良好的综合力学性能,其硬度(HV)为556,屈服强度为1 523 MPa,断裂强度为3 348 MPa,断裂应变为34.5%。  相似文献   

17.
镍基粉末高温合金的变形抗力大、热塑性较差、热加工窗口窄,而且在热加工过程中易产生裂纹和流动不稳定等缺陷。本文采用Gleeble-3500热模拟实验机对挤压态新型镍基粉末高温合金进行热压缩,压缩温度为1050~1150℃、应变速率为0.001~1 s-1,压缩真实应变为0.69。基于双曲正弦型Arrhenius函数,计算该合金的热激活能Q、构建本构方程,采用多项式拟合摩擦、温度变化、应变补偿的影响,对应力-应变曲线及本构方程进行修正,绘制能量耗散图和热加工图。结果表明:该合金的热激活能Q为536.36 kJ/mol,其在变形温度为1075~1150℃、应变速率为10-3~10-1.5 s-1的条件下有较好的加工性能,但当应变速率为0.001 s-1时,晶粒组织较为粗大,γ′相溶入基体。  相似文献   

18.
采用非自耗真空电弧熔炼炉制备了不同W含量的FeCoCrNiWx系高熵合金。采用X射线衍射仪(XRD)、扫描电镜(SEM)、MFT-EC4000往复型电化学腐蚀摩擦磨损试验仪、显微硬度计以及轮廓测量仪分别对合金的组织结构、形貌、成分分布、显微硬度、摩擦磨损性能进行了测试。结果发现,FeCoCrNiWx高熵合金均具有简单的面心立方体结构(FCC);随着W含量增加,高熵合金由单一的FCC相转变为FCC相+μ相;当x=0.5时,FeCoCrNiW0.5硬度(HV)为196.75,体积磨损量最低,合金具有较好的抗塑性变形能力和较好的耐磨性,强化机制为固溶强化和第二相(μ相)强化。  相似文献   

19.
采用真空感应熔炼制备Alx(TiVCrNb)100-x(x=0~25,%,摩尔分数)轻质高熵合金,利用X射线衍射仪、光学显微镜、显微硬度计和电子万能试验机等研究Al含量对高熵合金微结构及力学性能的影响。结果表明:Alx(TiVCrNb)100-x合金由BCC基体相及析出相组成。当x≤5时,Al元素掺杂能够抑制高熵合金基体中析出相的产生;当53)。固溶强化与第二相强化提高了合金的强度,但沉淀相在晶界的富集降低了高熵合金的塑性。  相似文献   

20.
应变速率对DP780钢动态拉伸变形行为的影响   总被引:2,自引:0,他引:2  
利用电液伺服高速试验机对DP780钢进行不同应变速率下的拉伸变形,结合SEM和TEM等手段,研究了应变速率对DP780钢拉伸性能及变形行为的影响规律及机制.结果表明,在较低应变速率(<100 s-1)条件下,随应变速率增加,DP780钢的强度、塑性等力学性能均未见显著变化.当应变速率超过101 s-1后,DP780钢的强度和应变硬化指数n明显提高;塑性在3×101-5×102 s-1范围内出现大幅度增加的现象.高应变速率的变形过程中,铁素体基体中位错运动速度加快,导致"近程阻力"增大,使DP780钢的变形抗力随应变速率的增加而增大.在应变速率达到3×101 s-1之后,铁素体中可动位错数量的大幅度提高,是DP780钢均匀伸长率和断后伸长率在3×101-5×102 s-1范围内得以明显增加的主要原因.DP780钢中的铁素体/马氏体界面是塑性变形过程中位错塞积、微裂纹形核及扩展的主要位置,而随应变速率的增加,铁素体基体中的形变强化程度增大,可降低铁素体基体与铁素体/马氏体界面之间塑性应变能差异,延缓铁素体/马氏体界面处微裂纹的形成和扩展,一定程度上提高了DP780钢非均匀塑性变形能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号