首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural, elastic, thermodynamic and electronic properties of L12-ordered intermetallic compounds Ni3X (X = Al, Ga and Ge) under pressure range from 0 to 50 GPa with a step of 10 GPa have been investigated using first-principles method based on density functional theory (DFT). The calculated structural parameters of Ni3X at zero pressure and zero temperature are consistent with the experimental data. The results of bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio v, anisotropy index AU and Debye temperature ΘD increase with the increase of external pressure. In addition, the Debye temperature of these compounds gradually reduce as the order of Ni3Al > Ni3Ga > Ni3Ge. The ratio of shear modulus to bulk modulus G/B shows that the three binary compounds are ductile materials, and the ductility of Ni3Al and Ni3Ga can be improved with pressure going up, while Ni3Ge is opposite. Finally, the pressure-dependent behavior of density of states, Mulliken charge and bond length are analyzed to explore the physical origin of the pressure effect on the structural, elastic and thermodynamic properties of Ni3X.  相似文献   

2.
The structural, electronic, elastic, mechanical and thermal properties of the isostructural and isoelectronic nonmagnetic RESn3 (RE = Y, La and Ce) compounds, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within PBE-GGA, WC-GGA and PBE-sol GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) are in good agreement with the experimental and other available theoretical results. We first time predict the elastic constants for these compounds using different approximations of GGA. All these RESn3 compounds are found to be ductile in nature in accordance with Pugh's criteria. The computed electronic band structures and density of states show metallic character of these compounds. The elastic properties including Poisson's ratio (σ), Young's modulus (E), shear modulus (GH) and anisotropy factor (A) are also determined using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of these RESn3 compounds are also estimated from the elastic constants. We first time report the variation of elastic constants, elastic moduli, Cauchy's pressure, sound velocities and Debye temperatures of these compounds as a function of pressure.  相似文献   

3.
First-principles calculations have been performed to investigate the phase stability, elastic, and thermodynamic properties of Co3(Al,Mo,Nb) with the L12 structure. Calculated elastic constants show that Co3(Al,Mo,Nb) is mechanically stable and possesses intrinsic ductility. It is found that the shear and Young's moduli of Co3(Al,Mo,Nb) are smaller than those of Co3(Al,W). Calculated density of states indicate the existence of covalent-like bonding in Co3(Al,Mo,Nb). Temperature-dependent thermodynamic properties of Co3(Al,Mo,Nb) can be described satisfactorily using the Debye-Grüneisen approach, including entropy, enthalpy, heat capacity and linear thermal expansion coefficient, showing their significant temperature dependences. Furthermore the obtained data can be employed in the modeling of thermodynamic and mechanical properties of Co-based alloys to enable the design of high temperature alloys.  相似文献   

4.
Three competing structures (C11b, C16 and E93) of intermetallic Zr2Cu have been systematically investigated by first-principles calculations and quasi-harmonic Debye model. Both the calculated equation of states (EOS) and pressure–enthalpy results indicate a structural phase transition from C11b to C16 phase at around 11–14 GPa. The calculated equilibrium crystal parameters and elastic constants are in consistence with available experimental or theoretical data. All three phases are mechanically stable according to the elastic stability criteria, and ductile according to Pugh's ratio, while the ambient-stable C11b phase shows a higher elastic anisotropy. Furthermore, differences in the nature of bonding between three competing structures are uncovered by electron density topological analysis. C11b Zr2Cu possesses an intriguing pseudo BaFe2As2-type structure with the charge density maxima at Zr tetrahedral interstices serving as Fe-position pseudoatoms; C16 Zr2Cu contains Zr-pair configurations bonded through bifurcated Zr–Zr bonding paths; while the E93 phase has only conventional straight bonding. Additionally, through quasi-harmonic Debye model, the pressure and temperature dependences of the bulk modulus, specific heat, Debye temperature, Grüneisen parameter and thermal expansion coefficient for three phases are obtained and discussed.  相似文献   

5.
The effects of applied pressures on the structural, mechanical and electronic properties of TiB compound were studied using the first-principles method based on the density functional theory. The results showed the pressures have the significant effects on the mechanical properties and electronic properties of TiB phase. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and Debye temperature) were in good agreement both with the previously reported experimental and theoretical results at zero pressure. Additionally, all these parameters presented the linearly increasing dependences on the external pressure. The B/G ratios signified the TiB crystals should exhibit the brittle deformation behavior at 0–100 GPa. The universal anisotropic index indicated the TiB compound was elastically isotropic under zero pressure, and may become anisotropic at higher pressures. Further, the density of states and Mulliken charge of TiB were discussed. The bonding nature in TiB was a combination of metallic, ionic and covalent at zero pressure. The metallic component was derived from free-electron transfer from the Ti4s to Ti3d and Ti3p states. The ionic component was originated from the charge transfer from Ti to B atoms. The covalent component had two sources. One was from the B2s–B2p hybridization in the B atomic chains. The other one was from B2p–Ti3d bonding hybridization. Under higher pressures, the ionic and covalent bonds were both improved with the rising of pressures. This should be the fundamental reason for the enhanced mechanical properties in the TiB compound. At the same time, the metallic bond kept leveled to ensure the electric conductivity.  相似文献   

6.
Elastic and thermodynamic properties of HfB2 with AlB2 structure under pressure are investigated by means of density functional theory method. The results at zero pressure are in good agreement with available theoretical and experimental values. The pressure dependence of elastic constants, bulk modulus and elastic anisotropy of HfB2 has been investigated. Through quasi-harmonic Debye model, the variations of the Debye temperature, heat capacity and thermal expansion with pressure and temperature are successfully obtained and discussed.  相似文献   

7.
The first-principles calculations were applied to investigate the structural, elastic constants of Zr2Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr2Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr2Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr2Al. Moreover, the elastic constants of Zr2Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.  相似文献   

8.
By means of first principles calculations, we have studied the structural, elastic, and phonon properties of the Al12X (X = Mo, Tc, Ru, W, Re, and Os) compounds in cubic structure. The elastic constants of these compounds are calculated, then bulk modulus, shear modulus, Young's modulus, Possion's ratio, Debye temperature, hardness, and anisotropy value of polycrystalline aggregates are derived and relevant mechanical properties are compared with the available theoretical ones. Furthermore, the phonon dispersion curves, mode Grüneisen parameters, and thermo-dynamical properties such as free energy, entropy and heat capacity are computed and the obtained results are discussed in detail.  相似文献   

9.
The structural, elastic and thermodynamic properties of FeB, Fe2B, orthorhombic and tetrahedral Fe3B, FeB2 and FeB4 iron borides are investigated by first-principle calculations. The elastic constants and polycrystalline elastic moduli of Fe–B compounds are usually large especially for FeB2 and FeB4, whose maximum elastic constant exceeds 700 GPa. All of the six compounds are mechanically stable. The Vickers hardness of FeB2 is estimated to be 31.4 GPa. Fe2B and FeB2 are almost isotropic, while the other four compounds have certain degree of anisotropy. Thermodynamic properties of Fe–B compounds can be accurately predicted through quasi-harmonic approximation by taking the vibrational and electronic contributions into account. Orthorhombic Fe3B is more stable than tetrahedral one and the phase transition pressure is estimated to be 8.3 GPa.  相似文献   

10.
First-principles calculations of the crystal structure and the elastic properties of α-Ta4AlC3 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The pressure dependence of the elastic constants cij, the aggregate elastic moduli (B, G, E), the Poisson's ratio, and the elastic anisotropy has been investigated. Using the quasi-harmonic Debye model considering the phonon effects, the temperature and pressure dependencies of isothermal bulk modulus, and the thermal expansions, and Grüneisen parameters, as well as Debye temperatures are investigated systematically in the ranges of 0–60 GPa and 0–1500 K as well as compared to available data.  相似文献   

11.
A systematic investigation on structural, elastic and electronic properties of Rh–Zr intermetallic compounds is conducted using first-principles electronic structure total energy calculations. The equilibrium lattice parameters, enthalpies of formation (Efor), cohesive energies (Ecoh) and elastic constants are presented. Of the eleven considered candidate structures, Rh4Zr3 is most stable with the lowest Efor. The two orthogonal-type, relative to the CsCl-type, are the competing ground-state structures of RhZr. The result is in agreement with the experimental reports in the literature. The analysis of Efor and mechanical stability excludes the presence of Rh2Zr and RhZr4 at low temperature mentioned by .Curtarolo et al. [Calphad 29, 163 (2005)]. It is found that the bulk modulus B increases monotonously with Rh concentration, whereas all other quantities (shear modulus G, Young's modulus E, Poisson's ratio σ and ductility measured by B/G) show nonmonotonic variation. RhZr2 exhibits the smallest shear/Young's modulus, the largest Poisson's ratio and ductility. Our results also indicate that all the Rh–Zr compounds considered are ductile. Furthermore, the detailed electronic structure analysis is implemented to understand the essence of stability.  相似文献   

12.
We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.  相似文献   

13.
《Acta Materialia》2001,49(14):2853-2861
We report the results of several experiments isolating the effect of long-range order on mechanical properties of intermetallic compounds. Kinetically disordered FCC Ni3Al (Ni 76%) thin films were produced by rapid solidification following pulsed laser melting. For comparison, compositionally and microstructurally identical films with ordered L12 structure were produced by subsequent annealing at 550°C for 2 h. These FCC and L12 Ni3Al thin films were tested by nanoindentation for hardness and Young's modulus, and the critical strain to fracture was measured by straining the substrate under four-point bending. Ni3Al thin films in the disordered phase were found to have nearly twice the critical strain to fracture, more than three times the fracture toughness, and about 20% lower hardness than in the ordered counterpart. Blunter crack tips and crack bridging observed in the disordered phase also illustrate increased ductility. The increased plasticity of Ni3Al due to chemical disorder is manifested both within the grains and at the grain boundaries. Young's moduli of the ordered and disordered materials were found to be indistinguishable.  相似文献   

14.
A model of temperature dependent shear modulus and Young's modulus in bulk metallic glasses is established. The inherent relationship between the glass transition temperatures, the Debye temperature and shear modulus of bulk metallic glasses is revealed. The temperature dependent shear modulus can be predicted by our model without any fitting parameter. The model is presented based on a critical energy density criterion for plastic yielding which is derived from fundamental thermodynamics. This critical energy density consists of two parts: the heat added to the system and the input of mechanical energy, which are not completely equivalent. The agreement between theoretical results and experimental results is striking. And it is found that the temperature dependent Young's modulus could also be predicted pretty well by our model.  相似文献   

15.
采用基于密度泛函理论的第一性原理计算方法,系统研究高压高温下Re2N的晶体参数、力学性能和热力学性能。结果表明:在高压下Re2N具有明显的弹性各向异性,与弹性常数C12、C13、C44相比,C11和C33的变化随着压力的变化非常明显。此外,首次计算Re2N的体弹模量B、弹性模量E和剪切模量G沿不同晶轴的分布。弹性模量在一些主要晶轴方向上的大小分布趋势如下:[0001][1211][1010][1011]EEEE〉〉〉。计算结果还表明:在(0001)晶面,Re2N的抗剪切能力是最低的,从而极大地减小对大剪切变形的阻力。基于准简谐德拜模型,在0~50GPa压力和0~1600K温度下得到德拜温度、格林艾森参数、热传导以及热扩散系数的变化行为。  相似文献   

16.
Studies were carried out on the equilibrium structural, temperature-dependent mechanical and thermodynamic properties of the Co3(M, W) (M = Al, Ge, Ga) phases in terms of first-principles calculations. The results of the ground-state elastic constants revealed that Co3(M, W) phases are mechanically stable and possess intrinsic ductility. It was found that the elastic heat-resistant properties of Co3(Ge, W) phase are inferior to those of Co3(Al, W) and Co3(Ga, W). Analyzing the charge density difference provides the explanation that the sharp decrease in mechanical properties is mainly due to the weakening of Co–Ge bonding at elevated temperatures for Co3(Ge, W). The elastic anisotropy as a function of temperature is discussed using a universal index. It is observed that Co3(M, W) phases show a high degree of elastic anisotropy. The degree of elastic anisotropy could be significantly decreased by an increase in temperature for Co3(M, W). The lattice vibration is treated with the quasiharmonic phonon approach, considering both the vibrational and thermal electronic contributions. The thermodynamic properties as a function of temperature are computed without any adjustable parameters, including heat capacity, entropy, enthalpy and thermal expansion coefficient.  相似文献   

17.
The structural, half-metallic and elastic properties of the half-Heusler compounds NiMnM (M = Sb, As and Si) and IrMnAs were investigated using first-principles calculations within the generalized gradient approximation (GGA) based on density function theory (DFT). The most stable lattice configurations about site occupancy are (Ni)4a(Mn)4c(Sb)4d, (Ni)4a(Mn)4c(As)4d, (Ni)4a(Mn)4c(Si)4d and (Ir)4a(Mn)4c(As)4d, respectively, and the exchange of elements in Wyckoff position 4c and 4d results in an identical (symmetry-related) phase. The half-Heusler compounds show half-metallic ferromagnetism with a half-metallic gap of 0.168 eV, 0.298 eV, 0.302 eV and 0.109 eV, respectively, and the total magnetic moments (Mtot) are 4.00 μB, 4.00 μB, 3.00 μB and 3.00 μB per formula unit, respectively, which agree well with the Slater–Pauling rule based on the relationship of valence electrons. The compound (Ir)4a(Mn)4c(As)4d with half-metallic ferromagnetic character was reported for the first time. The individual elastic constants, shear modulus, Young's moduli, ratio B/G and Poisson's ratio were also calculated. The compounds are ductile based on the ratio B/G. The Debye temperatures derived from the average sound velocity (νm) are 327 K, 332 K, 434 K and 255 K, respectively. The predicted Debye temperature for NiMnSb agrees well with the available experimental value, and the Debye temperatures for the rest three compounds were reported for the first time.  相似文献   

18.
《Scripta materialia》2002,46(2):143-147
The Young's moduli of three Ti2AlNb-based alloys were investigated. When they were heat treated to have a B2 single-phase structure, their Young's moduli were identical. In an O+B2 structure, the Young's modulus of O phase changed with alloy, and showed a correlation with the lattice parameter rate a/b.  相似文献   

19.
Binary diffusion couples, in which one single-phased product layer is growing between pure elements, were employed to study the diffusion properties of Au2Bi- and AuSb2-intermetallics at 230 and 330 °C. The position of the Kirkendall-marker plane inside the reaction zones revealed that in this temperature range the minority element is the faster diffuser in the Laves-phase Au2Bi as well as in AuSb2. The concept of integrated diffusion coefficient is used to describe the growth kinetics of the intermetallic compounds. The integrated diffusion coefficient in an intermetallic is related to the tracer diffusivities of the components and the thermodynamic stability of the phases involved in the interaction. The tracer diffusion coefficients were deduced from the interdiffusion experiments. The isothermal cross-section through the ternary phase diagram Au–Sb–Bi at 230 °C was constructed by means of the diffusion couple technique. No ternary phases are found in this system. Both intermetallic compounds Au2Bi and AuSb2 are in equilibrium with the (Sb,Bi)-solid solution. The solubility of Sb in the Laves-phase Au2Bi was found to be negligible. Up to about 10.5 at.% of Bi can be dissolved in the AuSb2-phase, the Bi-atoms substituting Sb in the cubic lattice of AuSb2.  相似文献   

20.
Al2Fe3Si3, a new semiconductor with complex triclinic structure was synthesized by arc melting and spark plasma sintering, followed by heat treatment. The nominal compositions of samples have been changed to compensate Al evaporation during synthesis process, and single Al2Fe3Si3 phase has been obtained with the nominal composition of Al: Fe: Si = 26: 37: 37 (6 at.% Al excess against stoichiometry). In this study, we measured the sound velocity, thermal expansion coefficient, Vickers hardness, fracture toughness, electrical conductivity, Seebeck coefficient, and thermal conductivity of the new semiconductor Al2Fe3Si3. The Al2Fe3Si3 sample displayed positive Seebeck coefficient from 300 to 850 K, with a maximum Seebeck coefficient of 110 μV/K at 430 K. The Debye temperature of Al2Fe3Si3 was 640 K, which was similar to or higher than those of other Al, Fe, Si based thermoelectric materials, but the lattice thermal conductivity was lower, 4–5 W/mK, due to the complex crystal structure of Al2Fe3Si3. The maximum ZT value was 0.06 at 580 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号