首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsed, lock-in and frequency modulated thermography are three alternative nondestructive evaluation techniques. The defect imaging performance of these techniques are compared using: matched excitation energy; the same carbon fiber composite test piece and infrared camera system. The lock-in technique suffers from “blind frequencies” at which phase images for some defects disappear. It is shown that this problem can be overcome by using frequency modulated (chirp) excitation and an image fusion algorithm is presented that enhance phase imaging of defects. The signal-to-noise ratios (SNRs) of defect images obtained by the three techniques are presented. For the shallowest defects (depths 0.25 and 0.5 mm, 6 mm diameter), the pulsed technique exhibits the highest SNRs. For deeper defects the SNRs of the three techniques are similar in magnitude under matched excitation energy condition.  相似文献   

2.
Ultrasound attenuation was measured in nickel specimens of about 30 mm diameter prepared using the high pressure torsion technique. The cold working process produced an equivalent shear strain increasing from zero at the center up to 1000% at the edge of the specimen. The fragmentation of the grains due to multiple dislocations led to an ultrafine microstructure with large angle grain boundaries. The mean value of the grain size distribution gradually decreased from ~50 μm at the center to 0.2 μm at the edge. Laser pulses of 5 ns were employed for the excitation of broadband ultrasound pulses covering the spectral range of 0.1–150 MHz. The ultrasound pulses were measured from the opposite side of the specimen by means of an optical interferometer and a piezoelectric foil transducer in two experimental setups. The features of the detected signal forms are discussed. The absolute value of the attenuation decreases from the center to the edge of the specimen showing nearly linear frequency dependence. The variation of the phase velocity was measured in a 6 mm-thick high pressure torsion nickel sample, revealing a velocity increase from the center to the edge.  相似文献   

3.
In this paper, a novel way to inspect local wall thinning in metal tubes with infrared thermography has been demonstrated. The first of its kind method utilizes a periscope-like reflector located deep inside a tube to mirror the radiated heat that flows across the tube thickness to an IR camera positioned outside the tube. Localized wall thinning was represented by partially drilled holes of different depths on a tube, of inner diameter 82 mm and outer diameter 91 mm. Feasibility studies were carried out through simulations using a finite element model. Experiments were performed to determine the thermal diffusivity of the material. Remaining thicknesses of the tubes in wall-thinned sections were found to be estimated reasonably well using measured time–temperature profiles obtained by flash method [Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 1961;32:1679–84]. The good correlation found between model calculations and measurements vindicated the utility of a model-based approach to applications of pulsed IR thermography.  相似文献   

4.
Mixed 93W–4.9Ni–2.1Fe powders were sintered via the spark plasma sintering (SPS) and hybrid spark plasma sintering (HSPS) techniques with 30 mm and 60 mm samples in both conditions. After SPS and HSPS, the 30 mm and 60 mm alloys (except 60 mm-SPS) had a relative density (> 99.2%) close to the theoretical density. Phase, microstructure and mechanical properties evolution of W–Ni–Fe alloy during SPS and HSPS were studied. The microstructural evolution of the 60 mm alloys varied from the edge of the sample to the core of the sample. Results show that the grain size and the hardness vary considerable from the edge to the core of sintered sample of 60 mm sintered using conventional SPS compared to hybrid SPS. Similarly, the hardness also increased from the edge to the core. Furthermore, the 60 mm-HSPS alloy exhibited improved bending strength of 1115 MPa when compared to that of 60 mm-SPS, 920 MPa. The intergranular fracture along the W/W grain boundary is the main fracture modes of W–Ni–Fe, however in the 60 mm-SPS alloy peeling of the grains was also observed which diminished the properties. The mechanical properties of SPS and HSPS 93W–4.9Ni–2.1Fe heavy alloys are dependent on the microstructural parameters such as tungsten grain size and overall homogeneity.  相似文献   

5.
In this paper the capability of a 3-D point reconstruction algorithm based on multiple hypothesis tracking is experimentally explored on a setup consisting of a microfocus X-ray source and a digital detector array. The algorithm is verified to detect and 3-D position steel particles with diameters 0.16–0.26 mm radiographed behind 4.7 mm Inconel 718 at two to ten times magnification. At ten times magnification the algorithm is verified to detect and 3-D position with an average error of 0.1 mm pore defects with diameters 0.05–0.25 mm in 4.7 mm thick titanium alloy laser welds.  相似文献   

6.
This paper describes the computer controlled processing of AISI-O1 steel rod by a dieless drawing method. Both the operation of a purposely built machine and the results of an experimental programme are described. The machine consisted of elements to provide a drawing force, a PID controlled band heater and an air/water cooling system to carry out the novel bar production process. The untreated material in bar form of initial diameter, 5 mm, was drawn in the temperature range of 600–750 °C at drawing velocities of 2.5–5 mm/min and with air-cooling provided in the pressure range 2–4 × 105 Pa. The process ratio, i.e. the ratio of the drawing velocity to the heat/cooling device movement velocity was varied between 0.35 and 1.33. A novel load-control algorithm was executed to ensure a steady-state process and a high tolerance on the final drawn diameter.  相似文献   

7.
Experiments on mechanical consolidation of rapidly solidified (RS) powder of 6061 + 26 mass% Si alloy were performed using the oscillating-die extrusion method. The RS powder was wrapped in thin-wall 6061-alloy cup 35 mm in diameter and vacuum-compressed by means of 100 ton press. Bars 8 mm in diameter were extruded with cross-section reduction of λ = 19 without any preheating of the charge. Tubes with a diameter/wall thickness of 14 mm/1 mm and cross-section reduction of λ = 33 were also manufactured with success. TEM/STEM observations revealed a very fine structure of as-extruded material and bimodal distribution of quasi-spherical silicon particles. Statistical analysis revealed a silicon fine fraction of 0.1–0.7 μm and a coarse fraction 2.1–2.5 μm in diameter. Examination by means of TEM did not reveal any significant changes in the morphology of the silicon particles, even when a high extrusion ratio and the material annealing after deformation were used. Hot compression tests on as-extruded rods (λ = 19) and preliminary annealed samples were performed at a constant true strain rate of 5 × 10?3 s?1 within the temperature range of 293–823 K. High strength of the material and relatively high ductility of samples deformed by compression up to ?t ? 0.4 were observed. The maximum flow stress value for as-extruded material was reduced with deformation temperature from ~390 to ~3.5 MPa for 293 and 823 K, respectively. Annealing of the samples at 773 K/30 min was found to reduce the maximum flow stress by 30–40%. Tensile strengths of similar as-cast alloys and materials manufactured by means of other powder metallurgy methods were shown for the purpose of comparison.  相似文献   

8.
Vacuum insulation panels (VIPs) are regarded as the most promising high-performance thermal insulation products on the market today. A high and stable vacuum state within VIP enclosure provides a durable service life for VIP. In this paper, multiple core material layers (CMLs) with thickness of 0.5 mm, 1 mm, 3 mm, and 7 mm were formed as the core of glassfiber VIPs. The microstructure of the core materials and thermal conductivity of as-prepared VIPs was investigated. The porosity of the core materials was about 90% while the mean pore diameter was about 10∼25 μm. At adopted pressure holding time of extraction process of 180 s, the initial total thermal conductivity of VIPs was lower than 4 mW/(m K) and slightly increased with total thickness of core material, but increased greatly with CMLs thickness. Mass transfer characteristics within core material during extraction process was analyzed based on the interlayer-microstructure model. Residual gases within VIPs were mainly extracted from the connected gas flow channel built by glass fibers. The optimum pressure holding time for VIPs with 0.5 mm-thickness, 1 mm-thickness, 3 mm-thickness, and 7 mm-thickness CMLs was 300 s, 240 s, 240 s, and 180 s, respectively.  相似文献   

9.
Precision grinding with diamond wheels gives a promising alternative to achieve high quality micro-structured surfaces on optical molds. However, it is difficult to true these diamond wheels efficiently, because of the remarkable resistance property and the geometrical limitation of small wheel profile. In this paper, an on-machine dry-EDT method to precision shape and prepare diamond wheels with various profiles was proposed for micro-structured surface grinding. Firstly, the fundamental truing errors were analyzed based on the dry-EDT kinematics. And then the capabilities of dry-EDT truing for high abrasive concentration metal bonded diamond wheels were presented. Next, the effects of kinematic parameters variables on trued wheel profile accuracy were investigated. Finally, the micro-structured surfaces on SiC ceramic and tungsten carbide WC were ground by these trued diamond wheels. The experiments results showed that the arc-shaped diamond wheel (diameter of 200 mm) with 4 μm profile error (PV) and 1.0023 mm profile radius, and the V-shaped diamond wheel with 22.5 μm V-tip radius and 120.03° profile angle could be obtained by on-machine dry EDT. The kinematic parameters of dry-EDT have an important influence on truing profile accuracy of diamond wheels, especially for the tip of V-shaped wheel. The subsequent grinding show that the edge radius of V groove array on SiC is less than 2 μm, while the radius of included corner is around 55 μm. The PV error of ground arc groove array on WC is less than 5 μm. The surface roughness of ground micro-structured surface Ra is 142 nm and 97 nm for SiC and WC, respectively.  相似文献   

10.
In this work, Ag colloid was prepared by electrical explosion of wire in deionized water with 0.2 mm and 0.3 mm wire diameter. The temperature of water used for medium of explosion process was change from 20 °C to 80 °C. Morphology and particle size of nanoparticles was observed by transmission electron microscope. The particle size and size distribution of nanoparticles was found to shift to a smaller size with a decrease of temperature and smaller wire diameter. Surface plasmon resonance of the silver colloids was studied by UV–vis spectroscopy. Stability of silver colloids was investigated by zeta-potential and Turbiscan techniques. The results indicated that temperature of medium during explosion affects much on the stability of Ag colloid. The silver colloidal stability prepared at lower temperature and smaller wire diameter was more stable.  相似文献   

11.
We report an efficient nondestructive evaluation (NDE) method to measure the pipe wall thinning (PWT) remotely using microwaves. A microwave vector network analyzer (VNA) and a self-designed transmitting and receiving (T&R) coaxial-line sensor were employed in the experiment to generate microwave signals propagating in the pipe where the frequency was swept from 14.00 to 14.20 GHz. A brass pipe with inner diameter of 17.03 mm, 1.0 mm wall thickness, 2.0 m length, and connected, respectively, with 6 joints having the length of 17.0 mm and PWT from 0% to 60% of wall thickness was measured. By taking the pipe as a circular waveguide of microwave, after building up a resonance condition and then solving the resonance equations, the evaluation of PWT was realized. By comparing the evaluated results obtained using our suggested method with the nominal inner diameters of the joints, the maximum evaluation error is found to be less than 0.05 mm, which is less than 0.294% of the inner diameter of the pipe, which indicates that a high precision evaluation method is established.  相似文献   

12.
Experiments for the forming characteristics of a tube by a rotary swaging process have been carried out to obtain a tubular product of desirable quality taking into account the process variables such as the forming feed and reduction of diameter of the product using the developed rotary swaging machine and four-split dies. From these experimental results, it is found that the process variables affect the quality of the tube such as the dimensional precision, hardness, surface roughness and microstructure of the product. It is also found that defects can occur at the forming feed of more than 2.0 mm/rev. The thickness of the product increased about 63% from its initial thickness of 2.3 mm to 3.75 mm. The hardness measured on the surface of the tube depended on the reduction of the diameter and is rarely affected by the variation of the forming feed from 0.5 to 2.0 mm/rev. The surface roughness of the product after swaging is about three times better than that before swaging. Based on these results a tubular rod shift for an automobile steering part was shown to be effectively manufactured by the rotary swaging process.  相似文献   

13.
Machining of cooling holes on thermal barrier coated superalloy components using a nanosecond (ns) laser generates considerable collateral damage such as recast layer, spatter and delamination of the ceramic coating. However, recent studies have suggested that these damages can be virtually eliminated by machining with femtosecond (fs) lasers. A detailed study on the microstructural characteristics of fs laser machined holes with diameters of 300 μm and 600 μm, generated on thermal barrier coated superalloy CMSX4 under various processing conditions has been conducted. Features examined include the shape, size and the surface finish of the hole wall. Femtosecond laser machined holes with a surface roughness of less than 2 μm and no major collateral damage could be generated in coated samples up to a thickness of 1.5 mm. The machining was found to cause minor ablative material removal from the top ceramic layer within 100 μm of the outer edge of the hole. The presence of machined holes did not affect the thermal cycling life at 1100 °C of the coated samples.  相似文献   

14.
A novel semi-dieless metal bellows forming process with local induction heating and axial compression without using any conventional dies is proposed. Firstly, the thickening of a tube is induced by local heating and axial compressive force. Secondly, the buckling of the tube occurs, producing a convoluted shape. The seamless tubes used are stainless steel SUS304 with an outer diameter of 5 mm and a thickness of 0.5 mm and 0.3 mm. The effects of compression ratio on the profiles of the bellows such as convolution height, pitch and thickness are investigated experimentally. It is found that convolution height can be controlled by compression ratio. Additionally, the mechanism of this process for fabrication of the metal bellows can be clarified by loading curve during processing. Furthermore, the validity of a two-step compression technique for improving convolution height and pitch is verified. The fundamental of the proposed technique can be confirmed as a basic key processing to fabricating metal bellows with various dimensions and small quantities.  相似文献   

15.
The performance of electromagnetic-thermal non-destructive inspection is investigated experimentally by eddy current thermography. The experiments concerned the detection of the crack in ten square aluminum plates at various positions and orientations. For the excitation are employed two circular coils with an outer diameter either smaller or comparable to the plate side. Crack detection is based not only on the thermograms, but on data processing techniques as well. Despite the fact that the performance of the infrared camera used is relatively low and the exciting frequency was only 50 Hz, the coil with small section detected effectively the nine cracks out of the ten while the coil with large section detected effectively seven out of ten.  相似文献   

16.
Selective laser melting is a rapidly maturing additive manufacturing technology ideally suited to the net-shape fabrication of high value metallic components with complex shapes. However, if the processing conditions are poorly controlled, internal defects such as cracks or pores filled with metal powder may be present and impair the properties. As a result, a non-destructive defect detection method needs to be found that is suited to this application. In this work, a staircase sample was designed and fabricated from Hastelloy X by selective laser melting with step thicknesses ranging from 0.8 mm to 10 mm and with each step containing the same series of custom-made spherical, rod-shaped and coin-shaped defects arranged in different orientations and ranging from 0.2 mm up to 2 mm in size. The sample was exposed to various X-ray radiography testing and analysis methods. In particular, a theoretical and experimental evaluation of defect detection limits by polychromatic X-ray absorption radiography was performed based on the measurable contrast, which depends on both defect size and shape and slab thickness. The experimental data suggest that the minimum detectable contrast is about 1–2% when using X-rays with a very broad spectrum. This equates to a minimum detectable defect size of about 0.2 mm for a Hastelloy X slab thickness of <2 mm. The experimental findings are in good agreement with theoretical expectations. The theoretical framework provides a criterion for estimating contrast, which is useful for optimising the experimental conditions. Polychromatic X-ray absorption radiography represents a simple and effective non-destructive investigation technique. Methods for further improving the defect detection limits are also discussed and examples relative to computed tomography are reported.  相似文献   

17.
The authors present an original eddy current imager (ECI) designed for the fast and accurate non-destructive evaluation of defects buried next to rivets in aeronautical lap-joints. The ECI is associated to a signal processing method based on a principal component analysis (PCA) followed by a maximum likelihood (ML) approach. The PCA was implemented using EC images obtained with selected excitation frequencies. These images are considered as resulting from a linear mixing of different sources including the presence of rivets and defects, and the PCA is used to separate these sources thanks to an eigen decomposition of the EC data covariance matrix. As a result, the defect signatures are enhanced and used to implement an automatic defect characterization. This characterization is carried out by the means of an ML approach which allows the length and depth of the defects to be estimated. The method was implemented for the evaluation of a laboratory made riveted lap joint mock-up featuring buried defects. It was experimentally optimized and successfully implemented for the characterization of calibrated defects ranging from 2 to 10 mm in length and 2 to 8 mm in depth.  相似文献   

18.
Detailed experimental studies have been carried out for the determination of optimum eddy current excitation frequencies for the defects located at different depths below the top surface of an aluminum plate. These subsurface defects were detected by using a highly sensitive superconducting quantum interference device (SQUID) based eddy current non-destructive evaluation (NDE) system. The signal to noise ratio was found to be significantly higher at the optimum excitation frequency, which depended on the depth of the defect. The optimum excitation frequencies have been evaluated for defects located at different depths from 2 to 14 mm below the top surface of the plate. The defect depth was varied in steps of 2 mm, while the overall total thickness of the stack of plates was kept constant at 15 mm. Each defect represented a localized loss of conductor volume, which was 60 mm in length, 0.75 mm in width and 1 mm in height. The experimental results show that the square root of the optimum excitation frequency is inversely proportional to the depth of defect.  相似文献   

19.
This paper investigated the effects of elasticity and viscosity, induced by a dilute high-molecular-weight polymer solution, on the shape, depth, and diameter of micro-holes drilled in borosilicate glass and in plates of 6061-T6 aluminum alloy, 110 copper, and 316 stainless steel using low-pressure abrasive slurry jet micro-machining (ASJM). Holes were machined using aqueous jets with 1 wt% 10 μm Al2O3 particles. The 180 μm sapphire orifice produced a 140 μm diameter jet at pressures of 4 and 7 MPa. When the jet contained 50 wppm of dissolved 8 million molecular weight polyethylene oxide (PEO), the blind holes in glass were approximately 20% narrower and 30% shallower than holes drilled without the polymer, using the same abrasive concentration and pressure. The addition of PEO led to hole cross-sectional profiles that had a sharper edge at the glass surface and were more V-shaped compared with the U-shape of the holes produced without PEO. Hole symmetry in glass was maintained over depths ranging from about 80–900 μm by ensuring that the jets were aligned perpendicularly to within 0.2°. The changes in shape and size were brought about by normal stresses generated by the polymer. Jets containing this dissolved polymer were observed to oscillate laterally and non-periodically, with an amplitude reaching a value of 20 μm. For the first time, symmetric ASJM through-holes were drilled in a 3-mm-thick borosilicate glass plate without chipping around the exit edge.The depth of symmetric blind holes in metals was restricted to approximately 150 μm for jets with and without PEO. At greater depths, the holes became highly asymmetric, eroding in a specific direction to create a sub-surface slot. The asymmetry appeared to be caused by the extreme sensitivity of ductile materials to jet alignment. This sensitivity also caused the holes in metals to be less circular when PEO was included, apparently caused by the random jet oscillations induced by the polymer. Under identical conditions, hole depths increased in the order: borosilicate glass > 6061-T6 aluminum > 110 copper > 316 stainless steel. The edges of the holes in glass could be made sharper by machining through a sacrificial layer of glass or epoxy.  相似文献   

20.
The production of carbon nanotubes (CNTs) has various methods, such as arc discharge, laser ablation, chemical vapor deposition (CVD), template-directed synthesis. These methods generally require, besides catalyst particles, vacuum environment and special ambient gas to prevent carbon from high temperature oxidation. However in this paper, CNTs were successfully produced on selected locations under atmospheric environment and room temperature by micro electrodischarge method. The micro electrodischarge system was composed with transistor circuit to offer discharging time of microseconds and peak current of several ampere. The effect of peak current and discharging time on the production of CNTs was addressed. Experimental results show that the structure and quantity of CNTs is different with different processing parameters. Multi-wall CNTs with the outer diameter of 17 nm and inner diameter of 5 nm were produced using peak current of 2.5 A and discharging time of 1000 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号