首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the optimal land allocation for two perennial crops, switchgrass and miscanthus that can be co-fired with coal for electricity generation. Detailed spatial data at county level is used to determine the costs of producing and transporting biomass to power plants in Illinois over a 15-year period. A supply curve for bioenergy is generated at various levels of bioenergy subsidies and the implications of production for farm income and greenhouse gas (GHG) emissions are analyzed. GHG emissions are estimated using lifecycle analysis and include the soil carbon sequestered by perennial grasses and the carbon emissions displaced by these grasses due to both conversion of land from row crops and co-firing the grasses with coal. We find that the conversion of less than 2% of the cropland to bioenergy crops could produce 5.5% of the electricity generated by coal-fired power plants in Illinois and reduce carbon emissions by 11% over the 15-year period. However, the cost of energy from biomass in Illinois is more than twice as high as that of coal. Costly government subsidies for bioenergy or mandates in the form of Renewable Portfolio Standards would be needed to induce the production and use of bioenergy for electricity generation. Alternatively, a modest price for GHG emissions under a cap-and-trade policy could make bioenergy competitive with coal without imposing a fiscal burden on the government.  相似文献   

2.
Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in sub-surface soil depths (>30 cm) could have a large positive or negative impact on overall GHG emissions from biofuels that are not always accounted for. Here, we evaluate how sub-surface SOC changes impact biofuel GHG emissions for corn (Zea mays L.) grain, corn stover, and switchgrass (Panicum virgatum L.) using the (Greenhouse Gases, Regulated Emissions, and Energy Use in the Transportation) GREET model. Biofuel GHG emissions showed as much as a 154% difference between using near-surface SOC stocks changes only or when accounting for both near- and sub-surface SOC stock changes. Differences in GHG emissions highlight the importance of accounting for sub-surface SOC changes especially in bioenergy cropping systems with potential for soil C storage to deeper soil depths.  相似文献   

3.
The area used for bioenergy feedstock production is increasing because substitution of fossil fuels by bioenergy is promoted as an option to reduce greenhouse gas (GHG) emissions. However, agriculture itself contributes to rising atmospheric nitrous oxide (N2O) and methane (CH4) concentrations. In this study we tested whether the net exchanges of N2O and CH4 between soil and atmosphere differ between annual fertilized and perennial unfertilized bioenergy crops. We measured N2O and CH4 soil fluxes from poplar short rotation coppice (SRC), perennial grass-clover and annual bioenergy crops (silage maize, oilseed rape, winter wheat) in two central German regions for two years. In the second year after establishment, the N2O emissions were significantly lower in SRC (<0.1 kg N2O–N ha−1 yr−1) than grassland (0.8 kg N2O–N ha−1 yr−1) and the annual crop (winter wheat; 1.5 kg N2O–N ha−1 yr−1) at one regional site (Reiffenhausen). However, a different trend was observed in the first year when contents of mineral nitrogen were still higher in SRC due to former cropland use. At the other regional site (Gierstädt), N2O emissions were generally low (<0.5 kg N2O–N ha−1 yr−1) and no crop-type effects were detected. Net uptake of atmospheric CH4 varied between 0.4 and 1.2 kg CH4–C ha−1 yr−1 with no consistent crop-type effect. The N2O emissions related to gross energy in the harvested biomass ranged from 0.07 to 6.22 kg CO2 equ GJ−1. In both regions, Gierstädt (low N2O emissions) and more distinct Reiffenhausen (medium N2O emissions), this energy yield-related N2O emission was the lowest for SRC.  相似文献   

4.
Second-generation bioenergy crops, including Short Rotation Forestry (SRF), have the potential to contribute to greenhouse gas (GHG) emissions savings through reduced soil GHG fluxes and greater soil C sequestration. If we are to predict the magnitude of any such GHG benefits a better understanding is needed of the effect of land use change (LUC) on the underlying factors which regulate GHG fluxes. Under controlled conditions we measured soil GHG flux potentials, and associated soil physico-chemical and microbial community characteristics for a range of LUC transitions from grassland land uses to SRF. These involved ten broadleaved and seven coniferous transitions. Differences in GHGs and microbial community composition assessed by phospholipid fatty acids (PLFA) profiles were detected between land uses, with distinctions between broadleaved and coniferous tree species. Compared to grassland controls, CO2 flux, total PLFAs and fungal PLFAs (on a mass of C basis), were lower under coniferous species but unaffected under broadleaved tree species. There were no significant differences in N2O and CH4 flux rates between grassland, broadleaved and coniferous land uses, though both CH4 and N2O tended to have greater uptake under broadleaved species in the upper soil layer. Effect sizes of CO2 flux across LUC transitions were positively related with effect sizes of soil pH, total PLFA and fungal PLFA. These relationships between fluxes and microbial community suggest that LUC to SRF may drive change in soil respiration by altering the composition of the soil microbial community. These findings support that LUC to SRF for bioenergy can contribute towards C savings and GHG mitigation.  相似文献   

5.
With Germany as the point of energy end-use, 70 current and future modern pathways plus 4 traditional biomass pathways for heat, power and transport have been compiled and examined in one single greenhouse gas (GHG) balancing assessment. This is needed to broaden the narrow focus on biofuels for transport and identify the role of bioenergy in GHG mitigation. Sensitivity analysis for land-use changes and fossil reference systems are included. Co-firing of woody biomass and fermentation of waste biomass are the most cost-efficient and effective biomass applications for GHG emission reduction in modern pathways. Replacing traditional biomass with modern biomass applications offers an underestimated economic potential of GHG emission reduction. The range of maximum CO2 equivalent GHG reduction potential of bioenergy is identified in a range of 2.5-16 Gt a−1 in 2050 (5-33% of today’s global GHG emissions), and has an economic bioenergy potential of 150 EJ a−1.  相似文献   

6.
Accounting for greenhouse gas (GHG) emissions at the production stage of a bioenergy crop is essential for evaluating its eco-efficiency. The objective of this study was to calculate the change in GHG emissions for canola (Brassica napus L.) production on the Canadian Prairies from 1986 to 2006. Net GHG emissions in the sub-humid and semi-arid climatic zones were estimated for fallow-seeded and stubble-seeded canola in intensive-, reduced- and no-tillage systems, with consideration given to emissions associated with synthetic nitrogen (N) fertilizer input, mineralized N from crop residues, N leaching and volatilization, farm operations, the manufacturing and transportation of fertilizer, agrochemicals and farm machinery, and emission and removal of CO2 associated with changes in land use (LUC) and land management (LMC). The GHG emissions on an area basis were higher in stubble-seeded canola than in fallow-seeded canola but, the opposite was true on a grain dry matter (DM) basis. Nitrous oxide emissions associated with canola production, CO2 emissions associated with farm energy use and the manufacturing of synthetic N fertilizer and its transportation contributed 49% of the GHG emissions in 1986 which increased to 66% in 2006. Average CO2 emissions due to LUC decreased from 27% of total GHG emissions in 1986 to 8% in 2006 and soil C sequestration due to LMC increased from 8% to 37%, respectively. These changes caused a reduction in net GHG emission intensities of 40% on an area basis and of 65% on a grain DM basis. Despite the reduction in GHG emission intensities, GHG emissions associated with canola in the Prairies increased from 3.4 Tg CO2 equiv in 1986 to 3.8 Tg CO2 equiv in 2006 because of the more than doubling of canola production.  相似文献   

7.
Nitrogen (N) fertilization can increase bioenergy crop production; however, fertilizer production and application can contribute to greenhouse gas (GHG) emissions, potentially undermining the GHG benefits of bioenergy crops. The objective of this study was to evaluate the effects of N fertilization on GHG emissions and biomass production of switchgrass bioenergy crop, in northern Michigan. Nitrogen fertilization treatments included 0 kg ha−1 (control), 56 kg ha−1 (low) and 112 kg ha−1 (high) of N applied as urea. Soil fluxes of CO2, N2O and CH4 were measured every two weeks using static chambers. Indirect GHG emissions associated with field activities, manufacturing and transport of fertilizer and pesticides were derived from the literature. Switchgrass aboveground biomass yield was evaluated at the end of the growing season. Nitrogen fertilization contributed little to soil GHG emissions; relative to the control, there were additional global warming potential of 0.7 Mg ha−1 y−1 and 1.5 Mg ha−1 y−1 as CO2 equivalents (CO2eq), calculated using the IPCC values, in the low and high N fertilization treatments, respectively. However, N fertilization greatly stimulated CO2 uptake by switchgrass, resulting in 1.5- and 2.5-fold increases in biomass yield in the low and high N fertilization treatments, respectively. Nitrogen amendments improved the net GHG benefits by 2.6 Mg ha−1 y−1 and 9.4 Mg ha−1 y−1 as CO2eq relative to the control. Results suggest that N fertilization of switchgrass in this region could reduce (15-50%) the land base needed for bioenergy production and decrease pressure on land for food and forage crop production.  相似文献   

8.
《Biomass & bioenergy》2007,31(9):601-607
In Australia, the Mandatory Renewable Energy Target (MRET) scheme, which targets a 9.5 TWh per annum increase in renewable electricity generation by 2010, is stimulating interest in bioenergy. Development of bioenergy projects may cause competition for biomass resources. For example, sawmill residues are an attractive feedstock for bioenergy, but are also utilised for particleboard manufacture. This study compares the greenhouse gas (GHG) mitigation impacts of alternative scenarios where sawmill residues are used either for generation of electricity or for manufacture of particleboard. The study considers a theoretical particleboard plant processing 100 kt feedstock of dry sawmill residues per annum. If the sawmill residues are used instead for bioenergy, and the particleboard plant utilises fresh plantation biomass, 205 kt CO2eq emissions are displaced. However, GHG emissions for particleboard manufacture increase by about 38 kt CO2eq, equivalent to 19% of the fossil fuel emissions displaced, due to the higher fossil fuel requirements to harvest, transport, chip and dry the green biomass. Also, plantation carbon stock declines by 147 kt CO2eq per year until a new equilibrium is reached after 30 years. This result is influenced particularly by the fossil fuel displaced, the relative efficiency of the fossil fuel and bioenergy plants, the moisture content of the sawmill residues, and the efficiency of the dryer in the particleboard plant.Under MRET, calculation of Renewable Energy Certificates is based solely on the quantity of power generated. This study illustrates that indirect consequences can reduce the GHG mitigation benefits of a bioenergy project. Increased emissions off-site, and loss of forest carbon stock, should be considered in calculating the net GHG mitigation benefit, and this should determine the credit earned by a bioenergy project.  相似文献   

9.
Short rotation coppice (SRC) plantations are of interest as producers of biomass for fuel, but also as carbon (C) sinks to mitigate CO2 emissions. Carbon sequestration in biomass and soil was estimated in 5-year-old replicated SRC plantations with willows (Salix spp.) on former arable land at five sites in Sweden. Total standing C stocks, i.e. C stored in woody biomass above- and belowground, fine root standing crop, litter, and soil organic carbon (SOC) were estimated by repeated field sampling and C budget calculation.Overall, the SRC willow plantations represented a C sink after five years. Estimated increase of total standing C stock was 15% on average compared to pre-planting conditions. There was no change in SOC when including all sites. Analyses within sites revealed a decrease in SOC at one site, although the decrease was compensated for by C stored in willow biomass. After removal of stem biomass, C in other plant pools was sufficient to compensate for the SOC decrease. Remaining C in stumps, stool, and coarse roots was estimated at ca 20% of stem C.There was a discrepancy between SOC sequestration rates from soil sampling and C budget calculation, −2.1–1.0 and 0.15–0.45 Mg ha−1 y−1, respectively. Mineralization of old organic material from previous land-use and input to SOC from understory vegetation were not included in the calculations, which may explain part of the differences. The importance of understory litter in C budgets for young plantations was apparent, as it comprised 24–80% of aboveground litter C.  相似文献   

10.
The Renewable Energy Directive sets a target for the European Union (EU) to consume 20% of its final energy from renewable sources by 2020 and further targets are under discussion. EU renewable energy targets will lead to a substantial increase in the demand for bioenergy. As for other sectors, it is important, therefore, to apply the principles of the EU Resource efficiency roadmap to bioenergy production: producing more output with less material input and minimising adverse environmental impacts during the entire production life cycle. This paper uses that concept to analyse the most resource efficient ways for reaching the 2020 bioenergy targets (as set out in National Renewable Energy Action Plans).Scenario analysis with three different storylines is used to model environmental and land use implications plus total bioenergy potential and GHG reductions in 2020 from the agricultural, forest, and waste sectors. These storylines vary in environmental ambition level and economic and political assumptions and explore plausible bioenergy development paths. They show substantial variance in terms of environmental impact and the GHG efficiency between different bioenergy pathways.The modelling shows that under Storyline 1 bioenergy targets of the National Renewable Energy Action Plans would be achieved with CO2 eq emissions of 44 kg GJ1, i.e. 62% less GHG emission than if the energy were generated using fossil fuels. In contrast, stricter environmental constraints in Storyline 3 lead to a substantially lower CO2 eq burden of 25 kg GJ1, which represents an 80% reduction compared to fossil fuels.  相似文献   

11.
Climate change and energy policies often encourage bioenergy as a sustainable greenhouse gas (GHG) reduction option. Recent research has raised concerns about the climate change impacts of bioenergy as heterogeneous pathways of producing and converting biomass, indirect impacts, uncertainties within the bioenergy supply chains and evaluation methods generate large variation in emission profiles. This research examines the combustion of wood pellets from forest residues to generate electricity and considers uncertainties related to GHG emissions arising at different points within the supply chain. Different supply chain pathways were investigated by using life cycle assessment (LCA) to analyse the emissions and sensitivity analysis was used to identify the most significant factors influencing the overall GHG balance. The calculations showed in the best case results in GHG reductions of 83% compared to coal-fired electricity generation. When parameters such as different drying fuels, storage emission, dry matter losses and feedstock market changes were included the bioenergy emission profiles showed strong variation with up to 73% higher GHG emissions compared to coal. The impact of methane emissions during storage has shown to be particularly significant regarding uncertainty and increases in emissions. Investigation and management of losses and emissions during storage is therefore key to ensuring significant GHG reductions from biomass.  相似文献   

12.
《Biomass & bioenergy》2005,28(5):454-474
In the face of climate change that may result from greenhouse gas (GHG) emissions, the scarcity of agricultural land and limited competitiveness of biomass energy on the market, it is desirable to increase the performance of bioenergy systems. Multi-product crops, i.e. using a crop partially for energy and partially for material purposes can possibly create additional incomes as well as additional GHG emission reductions. In this study, the performance of several multi-product crop systems is compared to energy crop systems, focused on the costs of primary biomass fuel costs and GHG emission reductions per hectare of biomass production. The sensitivity of the results is studied by means of a Monte-Carlo analysis. The multi-product crops studied are wheat, hemp and poplar in the Netherlands and Poland. GHG emission reductions of these multi-product crop systems are found to be between 0.2 and 2.4 Mg CO2eq/(ha yr) in Poland and 0.9 and 7.8 Mg CO2eq/(ha yr) in the Netherlands, while primary biomass fuel costs range from −4.1 to −1.7 €/GJ in the Netherlands and from 0.1 to 9.8 €/GJ in Poland. Results show that the economic attractiveness of multi-product crops depends strongly on material market prices, crop production costs and crop yields. Net annual GHG emission reductions per hectare are influenced strongly by the specific GHG emission reduction of material use, reference energy systems and GHG emissions of crop production. Multi-product use of crops can significantly decrease primary biomass fuel costs. However, this does not apply in general, but depends on the kind of crops and material uses. For the examples analysed here, net annual GHG emission reductions per hectare are not lowered by multi-product use of crops. Consequently, multi-product crops are not for granted an option to increase the performance of bioenergy systems. Further research on the feasibility of large-scale multi-product crop systems and their impact on land and material markets is desirable.  相似文献   

13.
The cultivation of bioenergy crops (BECs) represents a significant land-use change in agri-environments, but their deployment has raised important issues globally regarding possible impacts on biodiversity. Few studies however, have systematically examined the effect of commercial scale bioenergy plantations on biodiversity in agri-ecosystems. In this study we investigate how the abundance and diversity of two key components of farmland biodiversity (ground flora and winged invertebrates) varied between mature willow Short Rotation Coppice (SRC) and two alternative land-use options (arable crops and set-aside land). Although the abundance of winged invertebrates was similar across all land-uses, taxonomic composition varied markedly. Hymenoptera and large Hemiptera (>5 mm) were more abundant in willow SRC than in arable or set-aside. Similarly although plant species richness was greater in set-aside, our data show that willow SRC supports a different plant community to the other land-uses, being dominated by competitive perennial species such as Elytrigia repens and Urtica dioica. Our results suggest that under current management practices a mixed farming system incorporating willow SRC can benefit native farm-scale biodiversity. In particular the reduced disturbance in willow SRC allows the persistence of perennial plant species, potentially providing a stable refuge and food sources for invertebrates. In addition, increased Hymenoptera abundance in willow SRC could potentially have concomitant effects on ecosystem processes, as many members of this Order are important pollinators of crop plants or otherwise fulfil an important beneficial role as predators or parasites of crop pests.  相似文献   

14.
Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages—material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO2-eq). Primary energy demand, petroleum demand and GHG emissions in China’s passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.  相似文献   

15.
This paper deals with a methodology for calculating the greenhouse gas (GHG) balances of bioenergy systems producing electricity, heat and transportation biofuels from biomass residues or crops. Proceeding from the standard Life-Cycle Assessment (LCA) as defined by ISO 14040 norms, this work provides an overview of the application of the LCA methodology to bioenergy systems in order to estimate GHG balances. In this paper, key steps in the bioenergy chain are identified and the bioenergy systems are compared with fossil reference systems producing the same amount of final products/services. The GHG emission balances of the two systems can thus be compared. Afterwards, the most important methodological assumptions (e.g. functional unit, allocation, reference system, system boundaries) and key aspects affecting the final outcomes are discussed. These key aspects are: changes in organic carbon pools, land-use change effects (both direct and indirect), N2O and CH4 emissions from agricultural soils and effects of crop residue removal for bioenergy use. This paper finally provides some guidelines concerning the compilation of GHG balances of bioenergy systems, with recommendations and indications on how to show final results, address the key methodological issues and give homogenous findings (in order to enhance the comparison across case studies).  相似文献   

16.
This study assesses a sustainable solution to greenhouse gases (GHGs) mitigation using constructed wetland-microbial fuel cells (CW-MFC). Roots of wetland plant Acorus Calamus L. are placed in biological anode to better enable anode microorganisms to obtain rhizosphere secretion for power improvement. Three selected cathode materials have a large difference in GHG emissions, and among them, carbon fiber felt (CFF) shows the lowest emissions of methane and nitrous oxide, which are 0.77 ± 0.04 mg/(m2·h) and 130.78 ± 13.08 μg/(m2·h), respectively. The CFF CW-MFC achieves the maximum power density of 2.99 W/m3. As the influent pH value is adjusted from acidic to alkaline, the GHGs emissions are reduced. The addition of Ni inhibits GHGs emission but decreases the electricity, the power density is reduced to 1.09 W/m3, and the methane and nitrous oxide emission fluxes decline to 0.20 ± 0.04 mg/(m2·h) and 15.49 ± 1.86 μg/(m2·h), respectively. Low C/N ratio reduces methane emission, while high C/N ratio effectively inhibits nitrous oxide emission. At the influent pH 8 and C/N = 5:1, the methane emission flux is approximately 10.60 ± 0.27 mg/(m2·h), and the nitrous oxide emission flux is only 10.90 ± 1.10 μg/(m2·h). Based on the above experimental results by controlling variable factors, it is proposed that CW-MFC offers an environment-friendly solution to regulate GHG emissions.  相似文献   

17.
The impact of anaerobic digestion (AD) technology on mitigating greenhouse gas (GHG) emissions from manure management on typical dairy, sow and pig farms in Finland was compared. Firstly, the total annual GHG emissions from the farms were calculated using IPCC guidelines for a similar slurry type manure management system. Secondly, laboratory-scale experiments were conducted to estimate methane (CH4) potentials and process parameters for semi-continuous digestion of manures. Finally, the obtained experimental data were used to evaluate the potential renewable energy production and subsequently, the possible GHG emissions that could be avoided through adoption of AD technology on the studied farms. Results showed that enteric fermentation (CH4) and manure management (CH4 and N2O) accounted for 231.3, 32.3 and 18.3 Mg of CO2 eq. yr?1 on dairy, sow and pig farms, respectively. With the existing farm data and experimental methane yields, an estimated renewable energy of 115.2, 36.3 and 79.5 MWh of heat yr?1 and 62.8, 21.8 and 47.7 MWh of electricity yr?1 could be generated in a CHP plant on these farms respectively. The total GHG emissions that could be offset on the studied dairy cow, sow and pig farms were 177, 87.7 and 125.6 Mg of CO2 eq. yr?1, respectively. The impact of AD technology on mitigating GHG emissions was mainly through replaced fossil fuel consumption followed by reduced emissions due to reduced fertilizer use and production, and from manure management.  相似文献   

18.
The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries. The lowest costs of producing (including storing and transporting across 100 km) in the year 2004 are calculated for Poland, Hungary and Lithuania at 43–64 € per oven dry tonne (odt) or 2.4–3.6 € GJ?1 higher heating value. This cost level is roughly equivalent to the price of natural gas (3.1  GJ?1) and lower than the price of crude oil (4.6  GJ?1) in 2004, but higher than the price of coal (1.7  GJ?1) in 2004. The costs of biomass in Italy and the United Kingdom are somewhat higher (65–105  odt?1 or 3.6–5.8  GJ?1). The doubling of the price of crude oil and natural gas that is projected for the period 2004–2030, combined with nearly stable biomass production costs, makes the production of perennial grasses competitive with natural gas and fossil oil. The results also show that the substitution of fossil fuels by biomass from perennial grasses is a robust strategy to reduce fossil energy use and curb GHG emissions, provided that perennial grasses are grown on agricultural land (cropland or pastures). However, in such case deep percolation and runoff of water are reduced, which can lead to overexploitation of fresh water reservoirs. This can be avoided by selecting suitable locations (away from direct accessible fresh water reservoirs) and by limiting the size of the plantations. The impacts on biodiversity are generally favourable compared to conventional crops, but the location of the plantation compared to other vegetation types and the size and harvesting regime of the plantation are important variables.  相似文献   

19.
This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO2. These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions.  相似文献   

20.
The combustion of fossil fuel contributes to not only global warming but also the emissions of air pollutants. In China, the rapid growth of energy consumption leads to a large quantity of greenhouse gas (GHG) and air pollutant emissions. Although many measures have been proposed by the local governments to mitigate the GHG emissions and improve air quality, limited economic resources slow the efforts of the local government to implement measures to control both types of emissions. The co-benefits approach can use resources efficiently to solve multiple environmental problems. In this study, we first calculated the CO2 and air pollutants (SO2, NOx and PM2.5) emissions in Xinjiang Uygur Autonomous Region. Then, the co-benefits of wind power, including mitigation of CO2 and air pollutants (SO2, NOx and PM2.5) emissions and water savings, were assessed and quantified in the Xinjiang Uygur Autonomous Region. The results demonstrate that, during the 11th five-year period (2006–2010), emissions mitigation by wind power accounted for 4.88% (1065 × 104 t) of CO2, 4.31% (4.38 × 104 t) of SO2, 8.23% (3.41 × 104 t) of NOx and 4.23% (0.32 × 104 t) of PM2.5 emission by the thermal power sector. The total economic co-benefits of wind power accounted for 0.46% (1.38 billion 2009US$) of the GDP of Xinjiang during 2006–2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号