首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
主要针对离散型数学模型的优化问题,分析使用遗传和蚁群算法的优缺点,并克服遗传算法、蚁群算法各自的局限性,发挥其优势,通过遗传-蚁群融合算法进行优化计算。在研究过程中,采用C#语言实现融合算法,并定义标准输入和输出结构。利用油田措施优化应用案例进行了对比实验验证,结果表明,融合算法能有效地发挥遗传、蚁群算法的优点,运算速度及求解效率均较理想。  相似文献   

2.
Ant Colony Optimization (ACO) is a Swarm Intelligence technique which inspired from the foraging behaviour of real ant colonies. The ants deposit pheromone on the ground in order to mark the route for identification of their routes from the nest to food that should be followed by other members of the colony. This ACO exploits an optimization mechanism for solving discrete optimization problems in various engineering domain. From the early nineties, when the first Ant Colony Optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available. Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO. This paper review varies recent research and implementation of ACO, and proposed a modified ACO model which is applied for network routing problem and compared with existing traditional routing algorithms.  相似文献   

3.
Assembly lines for mass manufacturing incrementally build production items by performing tasks on them while flowing between workstations. The configuration of an assembly line consists of assigning tasks to different workstations in order to optimize its operation subject to certain constraints such as the precedence relationships between the tasks. The operation of an assembly line can be optimized by minimizing two conflicting objectives, namely the number of workstations and the physical area these require. This configuration problem is an instance of the TSALBP, which is commonly found in the automotive industry. It is a hard combinatorial optimization problem to which finding the optimum solution might be infeasible or even impossible, but finding a good solution is still of great value to managers configuring the line. We adapt eight different Multi-Objective Ant Colony Optimization (MOACO) algorithms and compare their performance on ten well-known problem instances to solve such a complex problem. Experiments under different modalities show that the commonly used heuristic functions deteriorate the performance of the algorithms in time-limited scenarios due to the added computational cost. Moreover, even neglecting such a cost, the algorithms achieve a better performance without such heuristic functions. The algorithms are ranked according to three multi-objective indicators and the differences between the top-4 are further reviewed using statistical significance tests. Additionally, these four best performing MOACO algorithms are favourably compared with the Infeasibility Driven Evolutionary Algorithm (IDEA) designed specifically for industrial optimization problems.  相似文献   

4.
求解多维背包问题的MapReduce蚁群优化算法   总被引:1,自引:0,他引:1  
应用MapReduce编程模式实现蚁群优化算法的并行化计算,提出基于MapReduce的改进背包问题蚁群算法.通过改进概率计算时机、轮盘赌、交叉、变异等技术,降低蚁群算法的计算复杂度.在云计算环境中应用该算法分布式并行地求解大规模多维背包问题,仿真实验结果表明,该算法能改善蚁群算法搜索时间长的缺陷,增强对大规模问题的处理能力.  相似文献   

5.
In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with n ants is for graphs with n nodes and m edges, where ρ is an evaporation rate. This result can be modified to show that an ACO-based algorithm for One-Max with multiple ants converges in expected iterations, where n is the number of variables. This result stands in sharp contrast with that of Neumann and Witt, where a single-ant algorithm is shown to require an exponential running time if ρ=O(n−1−ε) for any ε>0.  相似文献   

6.
Energy consumption is a key parameter when highly computational tasks should be performed in a multiprocessor system. In this case, in order to reduce total energy consumption, task scheduling and low-power methodology should be combined in an efficient way. This paper proposes an algorithm for off-line communication-aware task scheduling and voltage selection using Ant Colony Optimization. The proposed algorithm minimizes total energy consumption of an application executing on a homogeneous multiprocessor system. The artificial agents explore the search space based on stochastic decision-making using global heuristic information with total energy consumption and local heuristic information with interprocessor communication volume. In search space exploration, both voltage selection and the dependencies between tasks are considered. The pheromone trails are updated by normalizing the total energy consumption. The pheromone trails represent the global heuristic information in order to utilize all entire energy consumption information from previous evaluated solutions. Experimental results show that the proposed algorithm outperforms traditional communication-aware task scheduling and task scheduling using genetic algorithms in terms of total energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号