首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《煤矿安全》2017,(3):171-174
以山西龙矿盘道煤业有限公司2~#煤层的采场条件为工程背景,基于FLAC~(3D)数值仿真软件对工作面回采过程中煤层底板采动破坏特征进行流固耦合数值模拟。研究表明:煤层回采后,采空区底板垂直应力呈"半椭圆"形。采空区底板垂直位移呈"环状"分布,且采空区底板下方10m内垂直位移受采动影响较大,采空区底板塑性区大致形成了一个平底"碗状"破坏形态,采空区中部底板岩体受水平采动应力影响较大,以剪切破坏为主。采空区两端煤壁附近底板受支承压力影响较大,以拉张破坏为主。  相似文献   

2.
采场端部底板破坏深度解析分析   总被引:1,自引:0,他引:1  
为了理顺采场端部底板岩体主应力场中3个主应力的力学逻辑关系,同时研究采场端部底板破坏深度,通过力学分析,确定了采场端部底板岩体主应力的具体形式,并以此为基础导出采场端部底板破坏深度的计算公式。研究结果表明,主应力场在极坐标下是关于极径r与极角θ的函数,且3个主应力与采场底板岩体的泊松比μ有关,当采场底板岩体的泊松比μ与采场端部底板岩体中的单元体在极坐标下的极角θ满足不同数值关系时,3个主应力是有所不同的,与之对应的采场端部底板破坏深度计算公式也必然不同。  相似文献   

3.
为了探究底板岩性及组合结构这一因素对采动底板变形破坏深度的影响,通过现场大量实测资料的整理分析,获得了类似均质底板和软硬岩不同组合结构底板在采动矿压作用下差异性变形破坏特征。研究结果表明:1)类似均质底板变形破坏规律相对简单,底板采动变形破坏深度主要受制于底板岩体的抗压破坏强度,总体上这种类型底板变形破坏程度具有自上至下呈由强及弱的渐次性变化特点;2)软硬岩夹层或互层底板采动变形破坏特征比较复杂,这种组合结构对底板采动变形破坏深度和程度均具有明显的控制作用,其中软弱夹层对底板破坏深度具有较强的约束效应,即软岩对上覆硬岩起到了重要的"褥垫效应",对下伏岩层产生"应力扩散效应"。研究结果揭示了底板岩性及组合结构对变形破坏深度具有重要的制约作用,对巷道支护和底板水防治均具有重要的理论和实际意义。  相似文献   

4.
张风达 《煤矿安全》2020,51(7):42-47
为分析深部采空区煤层底板滞后破坏特征,运用悬臂梁模型分析裂纹面间锁固段的变形破坏特征,通过试验分析岩样加载至塑性阶段后卸载再加载过程中的体积应变与偏应力的关系,结合煤层底板注水试验实测数据分析深部煤层底板岩体在采空区重新压实过程中的渗透性能变化。研究表明,裂纹面间锁固段变形破坏程度在采动剪切滑移和采动卸荷过程中逐渐增大;处于塑性状态的岩样在轴向应力卸载后再加载至卸载点81 MPa时,体积应变由0.000 56增大至0.001 1;现场实测发现距煤层底板18.19 m处的岩体在工作面推过测点3.6~15.8 m的过程中出现裂纹扩展、变形破坏,在工作面推过测点20.6~30.9 m过程中,底板岩体再次发生变形破坏,说明深部煤层底板在加载至塑性状态后卸荷并重新承载的过程中仍存在变形破坏可能性。  相似文献   

5.
为进一步认识底板破坏机理,运用半无限体理论计算了致使底板临界破坏的应力及位置,结合塑性力学的滑移线场理论推导出底板最大破坏深度计算公式,分析了底板最大破坏深度及其相关影响因素的关系,并通过算例分析说明了计算公式的合理性。结果表明:在煤壁塑性区范围一定的情况下,底板最大破坏深度随着底板岩石内摩擦角的增大而增大,随着底板岩石黏聚力的增大而减小。底板最大破坏深度不仅与采场端部煤体塑性区范围有关,而且随着工作面超前支承压力峰值的增大而增大。  相似文献   

6.
沿煤层倾斜方向底板“三区”破坏特征分析   总被引:1,自引:0,他引:1  
为了研究具有一定倾角煤层底板的采动破坏特征,基于矿山压力理论,建立了考虑煤层倾角的工作面侧向底板受力力学模型,采用摩尔-库仑破坏准则,推导了工作面侧向煤柱下方底板的最大破坏深度表达式。将底板采动破坏带沿煤层倾斜方向划分为3个不同区域,其呈现为一个比工作面宽度还要宽的、下大上小的"勺形"分布形态。利用数值模拟方法研究了倾角对煤层底板破坏深度、破坏形态以及最大破坏深度位置的影响规律。结果表明:1)底板塑性破坏区深度随工作面宽度的增大呈现增大的趋势;随煤层倾角的增大,先增大后减小,在煤层30°倾角时,塑性破坏区深度最大,底板岩体更容易发生剪切滑移破坏;2)工作面底板最大塑性破坏深度位置随煤层倾角的增大逐渐偏离工作面中部向下,且工作面越宽,偏离越远。  相似文献   

7.
《煤矿安全》2017,(6):192-195
基于弹性理论建立了沿煤层走向采动底板受力力学模型,计算了煤层回采过程中底板内任一点处的剪应力大小。根据武所屯煤矿16105工作面采场条件,利用FLAC~(3D)数值仿真软件对工作面回采过程中底板的应力分布规律进行流固耦合数值模拟。研究表明:煤层回采后,采空区底板垂直应力等值线呈"椭圆型"分布,采空区底板垂直应力向底板深部先迅速减小后缓慢增加,且增加的幅度越来越小。工作面两侧采动底板剪应力等值线大致呈"泡型"分布,当工作面推进至工作面见方(工作面推进距离等于其斜长)期时,底板剪应力达到峰值12 MPa,此时底板剪切破坏最为严重,同时还模拟计算了16105工作面底板的最大破坏深度为15 m。  相似文献   

8.
确定采动条件下金属矿山上覆岩体破坏区域与应力行为,以某金属矿为背景,采用RFPA计算程序对该矿山在开采过程中上覆岩体破坏特征及力学行为进行研究,同时结合声发射技术对采动条件下覆岩的破坏区域及应力分布范围进行深入分析,提出采动条件下的金属矿山覆岩破坏的“三区”概念及应力分布划分原则。研究表明:金属矿上覆岩随着采动影响可以划分为垮落区、塑性区、弹性区三个区域;并对各区域的应力行为特征进行分析归纳,上覆岩体应力分布分别呈现拉应力-拉应力区、拉应力-压应力区、压应力-压应力区、剪应力-压应力四个区域;其中拉应力-拉应力区和拉-压力区主要分布在采空区靠近悬空面上方和下方区域,压应力-压应力区主要分布于开采工作面正上方,剪应力-压应力主要分布于采空区周边围岩。该研究结果可为金属矿山三带的圈定和采取有效支护措施控制采空区围岩稳定提供理论依据。  相似文献   

9.
明确工作面底板采动应力分布规律,实现采动影响下底板岩体及巷道破坏程度的精准把握,能有效防止底板巷道的变形失稳。为此,根据极限平衡理论,构建煤岩体超前采动应力力学模型,获得支承压力扰动阶段和采空区卸压阶段底板岩体的力学分布规律,并基于压剪破坏准则及岩体卸荷损伤机制,得到底板岩体及巷道围岩破坏时空演化特征,进一步采用数值模拟进行可靠性验证。结果表明:采高增大,工作面前方煤体塑性区范围增大,超前支承压力集中系数减小;超前采动支承压力越大,底板岩体内主应力差越小,莫尔应力圆半径小,对底板的影响强度减弱,具体表现为底板岩体压剪破坏深度的减小;卸荷后底板岩体受力状态相同,岩体卸荷起点的增大,卸荷量增加,卸荷张拉破坏加剧,底板岩体塑性区呈“马鞍形”;推进过程中巷道围岩塑性区发生由“椭圆形”-“蝶形”-“竖直椭圆形”时空演化特征,采动支承应力越大,巷道破坏越严重,破坏主要集中在顶板及肩角位置。设计初采高度为3.5 m,通过布设光纤测试系统,得到采动过程中底板岩体及巷道随工作面推进变形与破坏的时空演化规律,测得底板岩体破坏深度最大为16.7 m,巷道围岩破坏深度最大为5.2 m,巷道围岩体在整个监测期间...  相似文献   

10.
针对含软弱夹层的顺层陡岩受地下重复采煤的影响,采用离散元数值软件UDEC模拟陡岩下方缓斜近距离煤层群区段上行开采,分析陡岩的变形破坏特征。研究结果表明:在重复采动过程中,开采不同煤层时,基底岩层的下沉曲线、水平位移曲线、垂直应力曲线以及剪应力曲线的变化趋势基本相同;上煤层开采后,陡岩坡肩卸荷裂缝会向下贯穿软弱夹层,在坡肩处形成危岩体;中、下煤层开采后采动裂隙会继续由上往下向坡体内延伸到基底岩层附近造成陡岩山体断裂;随着重复采动次数的增加,陡岩的变形破坏程度会急剧增大。  相似文献   

11.
为研究重复采动条件下覆岩变形破坏特征,采用数值模拟方法针对覆岩应力场、位移场、工作面超前支承压力分布特征进行分析,研究多次重复采动条件下围岩塑性区演化特征。结果表明:不同工作面的采空区同时形成应力拱壳结构;围岩支承压力峰值则整体呈现“先增大、后减小”的演化趋势。顶板下沉量受重复采动影响而不断增加,随着顶板塑性区与上层煤底板塑性区贯通,顶板产生大范围变形破坏。  相似文献   

12.
《煤炭技术》2017,(11):44-47
采用FLAC3D软件建立了3种软硬岩不同组合形式的底板采动效应数值计算模型,探讨了不同岩性组合类型底板的应力分布、位移以及破坏深度变化规律。研究结果表明:软-硬-软组合底板破坏区在采掘工作面下方最大,贯穿硬岩夹层,而硬-软-硬组合底板类型由于存在软岩夹层,使得整体受到破坏,其底板破坏深度略低于均质硬岩底板。硬岩层内则易形成高应力集中区。  相似文献   

13.
为研究深部倾斜煤层底板破坏特征及破坏深度,以羊东煤矿8469工作面为研究对象,采用理论分析、数值模拟和现场实测相结合的方法,对煤层采后底板应力分布规律、塑性区发育特征及破坏深度进行了研究。通过数值模拟与理论分析可知:煤层开采后,作用在周围煤岩体上的支承压力产生不同的应力分区。沿煤层走向方向,应力呈对称性变化,形状近似马鞍状,在工作面两端处产生应力集中;沿煤层倾向方向,倾斜剪切力的存在使底板岩体由采动破坏转变成滑移破坏,塑性破坏区和应力变化大致呈勺型分布形态,最大应力集中区出现在工作面下侧。随着工作面向前推进,底板破坏范围相应增大,但推进255m后,破坏深度不再增加。现场实测表明,底板浅部岩层最早受到扰动,且受到的扰动程度最高。扰动范围随最大注水量的减少而增加,在底板下25m范围内的岩层受影响较小。由此可知,该工作面底板破坏深度为25.0~29.2m。  相似文献   

14.
采动条件下煤层底板变形破坏特征研究   总被引:5,自引:0,他引:5  
采用相似材料模拟试验方法,重点研究了煤层底板的应力和变形随工作面开采的变化规律,得出煤层底板应力与变形具有采动差异效应和这种采动差异效应是底板岩层破坏裂隙产生拉剪复合破坏的力学机制的结论;采用理论分析方法,对采动影响条件下煤层底板破坏程度进行了分析,得出煤层底板破坏深度与岩层内摩擦角φ、岩层单向抗压强度σc、最大应力集中系数n和开采深度H之间的关系,在此基础上,提出了降低底板岩层破坏的措施。研究结果可为煤矿的安全开采和矿井水防治提供科学依据。  相似文献   

15.
孙志强 《中州煤炭》2019,(9):186-189
为了研究采动覆岩应力变化规律,采用理论研究和数值模拟,理论分析了采场底板岩体支承压力分布、采动裂隙场的空间形态;采用FLAC3D数值模拟了不同推进距离下水平剖面的应力分布和塑性破坏分布。研究得出,采动覆岩裂隙圈呈现典型的直接顶破断“O-X”型特征,采动塑性破坏区呈中间低和两端高的马鞍分布状态;底板和上覆岩层应力呈3个不同应力区域。  相似文献   

16.
为研究西部地区弱胶结地层煤层群开采过程中覆岩渗透性演化规律,以伊犁矿区伊新煤业开采地质条件为基础,通过构建弱胶结采动地层数值计算模型,分析了重复开采扰动下弱胶结煤系地层覆岩的应力分布特征、塑性破坏区发育及渗透性演化规律。结果表明:近距离上位煤层开采时,采动支承压力峰值的应力集中系数达到1.81,采空区覆岩最大拉应力值达到0.9MPa;上位煤层工作面推进距离达到300 m时,采空区上行破坏区和下行破坏区相互导通;重复开采扰动下,弱胶结地层采动覆岩的孔隙压力大幅下降,采动渗流场呈现采空区四周渗流速度大于采空区中部渗流速度、采空区煤壁侧的渗流速度大于两侧和切眼侧渗流速度,当上行和下行破坏区连通时渗流速度大幅增大;近距离下位煤层开采,当煤层间岩层破坏区初次贯通时,上下煤层间岩层形成中间渗流速度大、两边渗流速度小的扇形渗流场,随着工作面持续推进,最大渗流速度位于工作面前方。  相似文献   

17.
确定采动条件下金属矿山上覆岩体破坏区域与应力行为,以某金属矿为背景,采用RFPA计算程序对该矿山在开采过程中上覆岩体破坏特征及力学行为进行研究,同时结合声发射技术对采动条件下覆岩的破坏区域及应力分布范围进行深入分析,提出采动条件下的金属矿山覆岩破坏的"三区"概念及应力分布划分原则。研究表明:金属矿上覆岩体随着采动影响可以划分为垮落区、塑性区、弹性区三个区域;并对各区域的成因及划分依据进行详细分析;为了进一步研究上覆岩体变形破坏区域和破坏形状特征,在采动条件下从采空区上覆岩体的位移矢量变化角度进行分析,得出随着开采的进行,上覆岩体破坏形状经历了水母状、圆拱形、桶状的大致破坏形态过程,这种形态与金属矿山地表塌陷现场较吻合。研究结果可为金属矿山三带的圈定和采取有效支护措施控制采空区围岩稳定提供理论依据。  相似文献   

18.
《煤矿安全》2017,(5):210-213
为研究倾斜煤层底板破坏深度影响因素(采深、采高、工作面斜长、煤层倾角、以及顶、底板岩性组合)对底板采动破坏深度的敏感性。以阳城煤矿的采场条件为工程背景,基于FLAC3D数值模拟软件对1309工作面底板采动破坏深度进行正交模拟,并运用方差分析法对模拟结果进行分析研究。研究表明:各主控因素对底板破坏深度的敏感性主次顺序为:顶板岩性组合>工作面斜长>底板岩性组合>采深>采高>煤层倾角。其中,顶板岩性组合和工作面斜长高度显著,底板岩性组合、采深及采高显著,煤层倾角不显著。  相似文献   

19.
软弱顶板条件下,巷道在原岩应力与采动应力叠加作用下会出现深度较大的塑性破坏区,引发剧烈的巷道围岩变形,甚至出现冒顶隐患。为掌握采动过程中塑性区在软弱顶板中的演化规律,以敏东一矿回采巷道为工程背景,系统研究了采动前后巷道围岩塑性区分布与演化特征,结果表明:在本工作面超前支承压力和上区段工作面采空区侧向支承压力的叠加影响下,采动巷道周边两个主应力比值急剧升高,同时,受邻近工作面覆岩移动影响,巷道围岩周边应力中的最大主应力方向也将发生大幅度的偏转。伴随着软弱顶板采动巷道围岩主应力大小和方向的不断演化,最大塑性破裂深度逐渐扩展且朝向顶板,塑性区扩展过程中会出现隔层分布现象,顶板剧烈变形主要是由塑性破坏产生,各层位顶板的破裂顺序依次为浅部塑性破坏、高位软岩塑性破坏和中位岩层的破裂。中部层位的断裂破坏一般滞后于高位穿透塑性区的形成。期间巷道围岩出现严重的非均匀性大变形,支护难度极大。据此提出了以注浆锚索为核心的顶板控制方法,注浆层位应主要集中在采动期间发生高位穿透塑性破坏的层位,注浆覆盖范围应不小于高位穿透塑性破坏的分布范围,巷道顶板变形监测结果表明,顶板控制效果良好,顶板未出现安全隐患且变形量在允许范围内。  相似文献   

20.
对于特厚煤层分层开采,掌握煤层开采后下伏煤层应力分布及破坏特征能够为精准判定采空区瓦斯富集区提供一定理论依据。因此,为厘清倾斜特厚煤层下伏煤层应力及塑性破坏区的分布特征,开展了不同煤层倾角工作面回采的数值模拟计算。首先基于采空区压实理论,获得了采空区垮落岩体的应力-应变关系,进而通过迭代反演确定了破碎岩体的岩体力学参数。在此基础上,通过数值模拟计算及分析,得到了煤层倾角变化对下伏煤层应力分布及破坏特征的影响规律。结果表明:在采空区底板范围内,随着煤层倾角增大,采空区应力恢复"O"形圈不再以采空区中部走向线对称分布,而向倾向下部偏移。沿倾向,在采空区的上下两端,侧向应力集中系数均随煤层倾角增大而减小,但倾向上端侧向应力集中系数始终小于倾向下端侧向应力集中系数。沿走向,在工作面底板,超前支承应力集中系数随着煤层倾角增大而增大。最后,通过分析下伏煤层塑性破坏区的分布可知,工作面以及倾向上下端底板煤体内的塑性破坏深度均随着煤层倾角增大而增大,但倾向上端底板破坏深度始终小于倾向下端底板破坏深度;采空区底板最大塑性破坏深度所在位置逐渐远离采空区中部,向倾向下端偏移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号