首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent to which configurational entropy can stabilise a single solid solution in an Al0.5CrFeCoNiCu high entropy alloy has been assessed through characteristion of samples following casting and heat treatment at 1000 °C. At temperatures between 1000 °C and the onset of melting, the alloy was shown to be within a two phase field and these phases were stable following prolonged exposure at elevated temperature. X-ray and transmission electron diffraction indicated that both constituent phases had an fcc structure. Therefore, these phases share a Gibbs energy curve that must contain two local minima at the solidus temperature, rather than the single minimum required for a continuous solid solution. These observations indicate that there is no temperature at which this material is in a stable, solid state single phase field and that therefore, the configurational complexity is insufficient to stabilise a solid solution phase against enthalpic effects.  相似文献   

2.
Corrosion behavior of TaNbHfZrTi high-entropy alloy (HEA) was investigated in nitric and fluorinated nitric acid at ambient (27 °C) and boiling (120 °C) conditions. The alloy passivated spontaneously during potentiodynamic polarization in 11.5 M HNO3 at ambient condition. The corrosion rate was negligible in boiling 11.5 M HNO3, exposed for 240 h. Scanning electron microscopic (SEM) studies did not show any significant corrosion attack. The high corrosion resistance of TaNbHfZrTi HEA was attributed to its single phase bcc structure. X-ray photoelectron spectroscopic (XPS) analysis revealed that the protective passive film formed in boiling nitric acid was predominantly composed of Ta2O5, in contrast to the presence of ZrO2 and HfO2 in air-formed native film. Potentiodynamic polarization studies indicated a pseudo-passivation behavior of the HEA in 11.5 M HNO3 + 0.05 M NaF at ambient condition. In boiling fluorinated nitric acid, SEM images of TaNbHfZrTi HEA displayed a severely corroded morphology indicating the instability of the metal-oxides of the alloying elements. XPS investigations confirmed the presence of ZrF4, ZrOF2 and HfF4 along with un-protective oxides of Ta, Nb and Ti on the film, resulting in decreased corrosion resistance of TaNbHfZrTi HEA in fluorinated nitric acid.  相似文献   

3.
CrMnCoFeNi is a FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence. To understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. This temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA is not due to the temperature dependence of its shear modulus.  相似文献   

4.
Structural modification in a Zr-based metallic glass caused by irradiation with 7 MeV Xe26+ ions was investigated. Needle-like nanocrystalline structures, formed under ion irradiation, consist of Cu10Zr7 phase (primary) and/or minor (NixCu1−x)10Zr7 phase. The formation of needle-like nanocrystals suggested an anisotropic atomic diffusion caused by ion irradiation.  相似文献   

5.
In order to evaluate interstitial strengthening effect on the properties of high entropy alloy (HEA), a nitrogen-doped CrMnFeVTi6 HEA was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). XRD, SEM, TEM and FIB were used to characterize the phase composition and microstructure of this material. The sintered bulk HEA exhibits a microstructure comprising TiNx, BCC, Laves and B2 phases. The HEA exhibits high yield strength (>2729 MPa) and hardness in lower temperature range of <380 °C. Quantitative calculations of the contributions from each strengthening mechanism in the BCC phase indicate that the interstitial strengthening by nitrogen is the dominant mechanism. Nitrogen additions in the BCC phase can produce a yield strength increase of ∼634 MPa/at.%, which is much higher than the strengthening effects of carbon or boron additions in other alloys. This demonstrates that adding nitrogen is a viable approach for enhancing the strength of HEAs.  相似文献   

6.
目的 研究Al、Ti元素对激光沉积CoCrFeNi系高熵合金涂层耐蚀性能影响,并对影响程度进行比较。方法 采用激光沉积技术在316L不锈钢表面制备CoCrFeNiSi0.5、CoCrFeNiSi0.5Al0.5、CoCrFeNiSi0.5Ti0.5、CoCrFeNiSi0.5Al0.5Ti0.5等4种成分的高熵合金涂层,并通过X射线衍射仪(XRD)、金相显微镜(OM)、场发射扫描电镜(FESEM)以及电化学工作站等设备对高熵合金涂层凝固组织形貌、微观组织形貌、微区成分分布、耐腐蚀性能等方面进行分析研究。结果 激光沉积CoCrFeNiSi0.5高熵合金涂层物相由单一面心立方(FCC)相构成;CoCrFeNiSi0.5Al0.5高熵合金涂层的主要物相变成体心立方(BCC)相,并形成沿晶界网状分布的Cr3Si相;CoCrFeNiSi0.5Ti0.5高熵合金涂层的主要物相仍为FCC相,但枝晶间区域内形成G相(Ni16Ti6Si7),枝晶内区域形成长条状Cr15Co9Si6相;CoCrFeNiSi0.5Al0.5Ti0.5高熵合金涂层的主要物相为BCC相,枝晶间区域G相含量较CoCrFeNiSi0.5Ti0.5合金涂层有所降低,枝晶内区域形成弥散分布的方形纳米Fe3Al相。激光沉积CoCrFeNiSi-(Al,Ti)非等原子比高熵合金涂层在0.5 mol/L H2SO4溶液中的耐蚀性大小依次为CoCrFeNiSi0.5Ti0.5>CoCrFeNiSi0.5Al0.5Ti0.5>CoCrFeNiSi0.5>CoCrFeNiSi0.5Al0.5。浸蚀后,CoCrFeNiSi0.5高熵合金涂层以均匀腐蚀为主,CoCrFeNiSi0.5Al0.5涂层产生严重的晶间腐蚀,CoCrFeNiSi0.5Ti0.5涂层主要为枝晶间区域的点蚀,CoCrFeNiSi0.5Al0.5Ti0.5涂层枝晶间区域的点蚀程度明显高于CoCrFeNiSi0.5Ti0.5涂层,且枝晶内区域的纳米第二相颗粒发生脱落。结论 在酸性溶液环境中,相较于Al元素,Ti元素可更有效地提升激光沉积CoCrFeNi系高熵合金涂层的耐蚀性能。  相似文献   

7.
In this study, an equal-atomic FeNiCoCu high entropy alloy (HEA) and a Ti and Al added (FeNiCoCu)86Ti7Al7 HEA were subjected for high pressure torsion (HPT) up to 10 rotations. Microstructure observation and mechanical properties test revealed that significant grain refinement as well as enhanced strength could be obtained in both HPT processed alloys. The HPT processed FeNiCoCu HEA alloy shows nanocrystalline structure consisting of FCC matrix (grain size ∼100 nm) and FeCo-riched BCC phase. The HPT processed (FeNiCoCu)86Ti7Al7 HEA alloy shows nanocrystalline structured FCC matrix (mean grain size ∼50 nm) and refined NiCoTiAl-riched particles (mean particle size ∼0.71 μm). The ultimate tensile strength of the HPT processed FeNiCoCu and (FeNiCoCu)86Ti7Al7 alloys are 1402 MPa and 1849 MPa, respectively. The microstructure evolution during HPT and strengthening mechanisms of the HPT processed specimens were discussed.  相似文献   

8.
在1173 K下将金属氧化物在CaCl2熔盐中进行电脱氧,制备了CoCrFeNi高熵合金。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散X射线能谱(EDS)研究了不同电解时间下金属氧化物转化为高熵合金的相变过程。结果表明,CoCrFeNi高熵合金的形成过程包括快速脱氧和深度脱氧2个阶段。在快速脱氧阶段,在1 h内去除了烧结氧化物球团中93.93%(质量分数)的氧,电流效率达到89.95%。电解结束后,产物的氧含量可达0.26%(质量分数),电流效率为17.93%。该高熵合金的形成过程可用于指导建立低成本、高效率的电化学路线。  相似文献   

9.
本文采用粉末冶金技术制备了CrMn0.3FeVCu0.06高熵合金合金,并系统研究了合金的微观组织、力学性能及抗辐照性能,结果表明,采用粉末冶金制备的CrMn0.3FeVCu0.06合金由BCC结构的固溶体基体和FCC结构的第二相颗粒组成,且由于合金的晶粒尺寸和第二相颗粒的尺寸较小,晶界强化和弥散强化效应有效地提高了合金的强度和硬度,此外,由于第二相颗粒为FCC软相,颗粒起到弥散强化的同时又不会严重降低合金的塑性,因此,CrMn0.3FeVCu0.06合金同时具备高强度和优异的塑韧性。CrMn0.3FeVCu0.06合金的D等离子体辐照试验表明,在500 K、40 eV、1×1022 m-2s-1的辐照条件下,合金内部产生辐照气泡需要的临界辐照剂量Φcr大于2.0×1025 m-2,远大于同等辐照条件下在多晶钨中产生气泡的临界剂量,合金的抗辐照鼓泡性能优于传统的多晶钨,且随着辐照剂量的增大,合金表面的辐照气泡尺寸逐渐增大。此外,合金的纳米压痕测试结果表明,辐照温度和剂量对合金辐照硬化效应的作用是相反的,合金的硬度随着剂量的增大而升高,随温度的升高而降低,且由于CrMn0.3FeVCu0.06高熵合金中存在严重的晶格畸变和迟滞扩散效应,合金的辐照硬化效应对温度变化更敏感。  相似文献   

10.
The effects of Cu and Al substituting for Zn within bulk samples of η phase (nominally MgZn2) have been studied by laboratory X-ray powder diffraction and nuclear magnetic resonance. Increasing Al concentration causes both of the η phase lattice parameters to increase linearly, while increasing Cu concentration causes both parameters to decrease linearly. These effects also appear to combine in a linear fashion if both Al and Cu are substituted into the MgZn2 structure, particularly in the case of the a lattice parameter. Al was found to substitute evenly onto both Zn sites, while Cu substitutes preferentially onto the 6(h) site at low Cu concentrations, before causing significant disruptions to the structure at concentrations above 1.1 at.%, leading to the transition to long period stacking phases at the expense of η. High-resolution synchrotron powder diffraction from a commercial Al–Zn–Mg–(Cu) alloy revealed that the η phase precipitates with lattice parameters that are substantially smaller than for pure MgZn2, indicating Cu concentrations of at least 8.9 at.% and probably higher. It is likely that the Al matrix provides a mechanical constraint on the formation of any long period stacking phases and allows the η phase to exist in these alloys with such high Cu concentrations.  相似文献   

11.
Micrometer-sized γ−Ni dendrite reinforced nanoeutectic matrix composites have been developed in (Ni0.92Zr0.08)100–xAlx (0 ≤ x ≤ 4) by arc melting. The eutectic matrix is composed of alternate nano-lamellae of intermetallic Ni5Zr and fcc–Ni solid solution phases. All these composites exhibit very high strength, large compressive plasticity ∼25% and strain-hardening up to 1780 MPa. Al dissolves in γ−Ni(Zr) solid solution phase, decreases its hardness/strength, and increases the volume % of γ−Ni dendrite from 20% (x = 0) to 29% (x = 4). Whereas, refinement of the eutectic lamellae thickness from 275 nm (x = 0) to 160 nm (x = 4) increases the matrix hardness and retains the global strength of the composites. The effect of Al addition on the microstructure formation, volume fraction as well as the length scale of the constituent phases, and mechanical properties, have been discussed using an analytical model.  相似文献   

12.
The alloying behavior and microstructures of the (CoCrFeNiMn)90M10 (M=Al, Hf) high-entropy alloy (HEA) powders fabricated by mechanical alloying were studied. The CoCrFeNiMn)90Al10 powders have duplex solid-solution structures. In contrast, nanocrystalline HfNi3 anchoring in amorphous structures is found in the (CoCrFeNiMn)90Hf10 powders. The (CoCrFeNiMn)90Al10 powders show better ferromagnetic behaviors, mainly explained by the facilitated motion of the magnetic domain induced by the coherent interface between duplex phases. Combined with our previous work, the rules of forming solid-solution and amorphous phase in as-milled HEA powders are preliminarily proposed. It is found that, compared with the as-cast HEA reported previously, the variation range of mixing enthalpy with atomic size difference of the solid-solution formed in as-milled HEA powders is broader. Moreover, the variation ranges between mixing enthalpy and entropy with atomic size difference of the amorphous phase in HEA powder become wider than those of high-entropy bulk metallic glass.  相似文献   

13.
The influence of cooling rate on the microstructure of Al0.6CoCrFeNi high entropy alloy (HEA) powders was investigated. The spherical HEA powders (D50≈78.65 μm) were prepared by high pressure gas atomization. The different cooling rates were achieved by adjusting the powder diameter. Based on the solidification model, the relationship between the cooling rate and the powder diameter was developed. The FCC phase gradually disappears as particle size decreases. Further analysis reveals that the phase structure gradually changes from FCC+BCC dual-phase to a single BCC phase with the increase of the cooling rate. The microstructure evolves from planar crystal to equiaxed grain with the cooling rate increasing from 3.19×104 to 1.11×106 K/s.  相似文献   

14.
《Synthetic Metals》1997,90(2):89-92
The effect of an electron beam irradiation on cis—trans isomerization and oxidation in polyacetylene films is studied by IR spectroscopy. It is found that the irradiation treatment of the films results in the stabilization of the initial cis-conformation of polyacetylene and the decrease of the oxidation destruction of polymer chains. The effect of the conformation stabilization is most clearly seen in a long-duration storage of irradiated films under inert atmosphere at low temperatures. This effect is significantly less pronounced at high temperatures. The increase of the conformational stability of the irradiated polyacetylene films is supposed to be caused by the formation of transverse crosslinkages between the chains under irradiation.  相似文献   

15.
An analysis of more than 200 high-entropy alloys (HEA) allowed us to find interrelations between the electron concentration, phase composition, lattice parameter, and properties of solid solutions with bcc and fcc crystal lattices. Main conditions for the appearance of high-entropy chemical compounds, such as Laves, σ, and μ phases were determined. The necessary condition for the formation of 100% high-entropy σ phase is the formation of σ phase in two-component alloys for different combinations of elements, which are components of the HEA, and the electron concentration should be 6.7–7.3 electrons per atom. To form a 100% high-entropy Laves phase, the following conditions should be fulfilled: the total negative enthalpy of mixing of alloy is about –7 kJ/mol and less; the difference between the atom sizes in a pair is more than 12%; the enthalpy of the mixing of two present elements is less than –30 kJ/mol; and the average electron concentration is 6–7 electrons per atom. It was shown that the ratios of lattice parameters of solid-solution HEA, which were experimentally determined, to the lattice parameter of the most refractory metal in the HEA determine the value of the modulus of elasticity.  相似文献   

16.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   

17.
The combined effect of hydrophobic poly(dimethylsiloxane) chains and polyhedral oligomeric silsesquioxanes in protective coatings for AA 2024 alloy was investigated using standard electrochemical techniques. The coatings were subjected to ex situ and in situ vibrational spectroscopies to follow the changes in the bands of protective coatings during forced anodic polarisation. The ex situ IR reflection–absorption measurements were performed under near-grazing conditions (80°), yielding changes mainly in the C–H stretching region. Confocal Raman measurements were made under in situ conditions in a specially designed spectroelectrochemical cell. The results that could be obtained with both vibrational techniques are presented.  相似文献   

18.
Phase equilibria in the Mg-rich Mg–Ni–Y system at 300, 400 and 500 °C have been experimentally investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The results show that a long-period stacking ordered (LPSO) phase with 14H structure is thermodynamically stable in the Mg–Ni–Y system in a wide temperature range, but it dissolves varying from 492 to 559 °C depending on the alloy composition. The equilibrium 14H phase has a very limited solid solution range, and can be nearly regarded as a ternary stoichiometric compound with a formulae as Mg91Ni4Y5. The isothermal sections of the Mg-rich Mg–Ni–Y system at 300, 400 and 500 °C have been finally established, and a eutectic reaction, Liquid ↔ α-Mg + 14H + Mg2Ni, has been determined occurring at 492 °C with a liquid composition about Mg84.8Ni12.0Y3.2.  相似文献   

19.
In this study, alloys with composition of equi-atomic substituted TiZrHfNiCu, TiZrHfNiCuCo, and TiZrHfNiCuNb high-entropy alloys (HEAs) were produced by suction casting method. The effects of addition elements on phase composition, microstructure and mechanical behaviors of the HEA were studied. The suction casted Ti20Zr20Hf20Ni20Cu20 HEA exhibits single C14 Laves phase (MgZn2-type) with fine homogeneous microstructure. When Co or Nb elements are added, morphologies are slightly modulated toward well-developed dendritic microstructure, phase constitutions are significantly changed from single Laves phase to mixed multi-phases as well as mechanical properties are also altered with increased plasticity and high strength. It is believed that modulated mechanical properties are mainly ascribed to the change of phase constitution and crystalline structure, together with the microstructural characteristics. This clearly reveals that the selection and addition of supplementary elements based on the formation rule for HEAs play an important role on the evolution of phase, microstructural morphology and mechanical properties of Ti20Zr20Hf20Ni20Cu20 HEA.  相似文献   

20.
Experimental investigation and thermodynamic evaluation of the Co–Ta binary phase diagram was carried out. Equilibrium compositions obtained in two-phase alloys and diffusion couples were measured by electron probe microanalyzer (EPMA). A very narrow λ3(C36) + λ2(C15) two-phase region is confirmed to be present around 26.5 at.% Ta at temperatures between 950 °C and 1448 °C. Equilibrium relationships above 1500 °C among the liquid, Laves (λ1(C14), λ2 and λ3, whose stoichiometry is described by Co2Ta), μ(D8b) and CoTa2(C16) phases were investigated by microstructural examination in as-cast Co-(24–60 at.%)Ta alloys. The solvus temperature of the γ′ Co3Ta (L12) phase precipitated in the 5.8 at.%Ta γ(Co) and the peritectoid temperature of the Co7Ta2 phase in an 8.5 at.%Ta alloy were determined to be 1013 °C and 1033 °C, respectively, by differential scanning calorimeter (DSC). Fine precipitates of the γ′ phase precipitated in the γ (A1) matrix were observed by transmission electron microscope (TEM). Analyzing the present experimental results synthetically, the γ′ Co3Ta phase was identified to be a metastable phase, of which the γ/γ′ transition temperature of the stoichiometric Co3Ta alloy was estimated to be 2000 °C. Thermodynamic assessment of the Co–Ta binary system was carried out based on the present results as well as on experimental data in the literature. Calculated results of not only stable but also metastable equilibria were found to be in good agreement with the revised phase diagram. The evaluated stability of the metastable γ′ Co3Ta coincides with the enthalpy of formation (ΔH(γ'Co3Ta) = −23.44 kJ/mol) calculated by the ab initio method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号