首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探究页岩气抽采过程中气体传输和应力耦合作用对页岩表观渗透率的影响,提出了一种含加权因子耦合多种传输机理、吸附变形及应力应变关系的页岩表观渗透率模型,用来描述气体流动,通过试验数据验证其合理性,并对模型相关参数对页岩表观渗透率的影响进行讨论。研究结果表明:新建考虑流体流态和应力耦合作用的页岩表观渗透率模型能合理地表征页岩气体流动,包括考虑应力变化下气体滑脱效应、孔隙结构和吸附变形因素,以及体相气体传输的黏性流动(滑脱流动)和努森扩散因素。在不同围压、孔隙压力2种应力条件下,新建模型计算的曲线均与实测值吻合较好;且随孔隙压力、围压的升高,页岩表观渗透率呈指数函数形式降低,同时裂隙压缩系数Cf的绝对值整体呈降低的趋势。孔隙压力越低努森扩散所占比重越高,相同孔隙压力状态下,孔隙尺度越小,努森扩散的贡献率越大;页岩表观渗透率对弹性模量较为敏感,弹性模量越大吸附引起的基质变形量越小,相应渗透率升高量也将随之降低。不同页岩孔径所对应的主控传输机理不同,随孔径的减小,此时孔径与气体平均分子自由程具有可比性,发生滑脱流动,渗透率升高;考虑滑脱效应页岩表观渗透率计算值均大于不考虑滑脱效应计算值,且更接近试验测量值,随孔隙压力、围压的升高,滑脱效应引起的渗透率变化量逐渐降低。  相似文献   

2.
煤层气在低渗透性煤层渗流时受滑脱效应影响显著,目前的煤层气渗流模型大都将滑脱系数视为常数,然而在煤层气抽采时受有效应力和煤基质收缩效应影响,滑脱系数是动态变化的。据此,建立考虑动态滑脱系数的煤层气渗流模型,并采用有限元数值软件进行模拟分析;研究考虑动态滑脱效应后煤储层渗透率和滑脱系数随抽采时间变化规律;比较考虑动态滑脱系数与固定初始滑脱系数时,煤储层孔隙压力变化差异。研究结果表明:随着抽采时间的增加,滑脱系数先增大后减小,渗透率先减小后增大;考虑动态滑脱效应时,抽采30 d后煤储层各处的孔隙压力降低幅度较不考虑时均有所减小,且初始渗透率越低两者的差距越大。  相似文献   

3.
《煤矿安全》2021,52(10):19-23,29
注入CO_2增强煤层气开发过程中,煤储层渗透率的变化受有效应力变化、气体吸附/解吸引起的煤基质膨胀/收缩和气体滑脱效应耦合作用影响;为此,采用稳态法进行CH_4、CO_2渗流试验,研究不同应力环境下煤的吸附应变和气体滑脱效应对CH_4、CO_2渗流过程的影响。试验结果表明:相同应力环境下煤吸附CO_2产生的最大吸附应变为CH_4的1.01~2.39倍,使得CH_4在为煤中渗透率始终高于CO_2;同时随着埋深增加,外部应力增大,吸附应变减小;低应力环境下渗透率随气体压力减小呈"V"字形变化,随着外部应力增大,渗透率与气体压力呈负指数相关;此外,外部应力增大还将强化气体滑脱效应影响,使其更早的主导渗透率的演化。  相似文献   

4.
侯东升  梁卫国  张倍宁  李畅 《煤炭学报》2019,44(11):3463-3471
CO2驱替开采煤层气过程中,由于CO2和CH4的竞争吸附,CO2/CH4混合气体在运移时CH4体积分数会不断发生改变,进而影响煤体变形和渗透特性。利用自主研发的三轴渗流系统,采用稳态渗流法对焦煤样进行单一组分气体(He,CH4和CO2)和不同配比的CH4/CO2混合气渗流试验。渗流过程中保持温度和体积应力(30 ℃、33 MPa)恒定,并利用LVDT测量煤体的轴向变形。结果表明:① He和不同配比CH4/CO2混合气的渗流过程均受滑脱效应的影响,气体渗透率随入口压力增大呈先减小后缓慢增大的变化;对于非吸附He,入口压力Symbol|@@2 MPa时滑脱效应对气测渗透率的影响要远远大于有效应力效应;② 在一定的体积应力条件下,不同配比CH4/CO2混合气体吸附引起的煤体膨胀应变随入口压力增加而增大,变化规律符合Langmiur方程,且在相同入口压力条件下,混合气体中CO2浓度越高,煤体膨胀应变越大;③ 在考虑有效应力效应、吸附膨胀应变对渗透率的动态影响以及滑脱因子b随煤体渗透率变化的基础上,建立了煤体气测渗透率理论模型,该模型能够描述不同配比CH4/CO2混合气体以及He渗透率随入口压力的变化;④ 随着煤储层CH4/CO2混合气体压力增大或者CO2体积分数升高,基质膨胀应变对煤体渗透率的影响逐渐减小。煤体中靠近孔裂隙的基质吸附膨胀对渗透率的影响(β)随入口压力的增加逐渐减小;CH4/CO2混合气体中CO2体积分数越高,β减小速率越大。  相似文献   

5.
煤层气藏单相气体渗流特征实验研究   总被引:3,自引:0,他引:3  
本文利用低速渗流实验装置,研究了煤层气藏的应力敏感性和滑脱效应,比较了煤层气藏岩心和砂岩试样结果的差异.研究结果表明:裂缝发育的煤岩属于强应力敏感性介质,随着有效应力的增大,岩心渗透率下降,当围压增加到10MPa时,岩心无因次渗透率低于10%;煤层气藏单相气体渗流具有滑脱效应,并且确定了滑脱系数与渗透率关系式,但在渗透率相差不大的情况下,其滑脱效应弱于低渗透砂岩气藏.  相似文献   

6.
多因素叠加作用下煤储层渗透率的动态变化规律   总被引:3,自引:0,他引:3  
汪吉林  秦勇  傅雪海 《煤炭学报》2012,37(8):1348-1353
分析了煤储层渗透率的主要影响因素,讨论了有关黏性渗流的基本理论问题。在不同轴压、围压和气体压力梯度下,对山西晋城矿区原状无烟煤煤样进行了三维应力场的CH 4渗流实验,计算并分析了有效应力、煤基质收缩、气体滑脱效应等因素对渗透率的影响及其叠加作用的表现。认为吸附态的CH 4分子组成了煤储层孔-裂隙气体渗流的边界层,滑脱效应存在于边界层以外,煤储层渗透率的动态变化是有效应力、煤基质收缩效应和滑脱效应叠加作用的结果,渗透率在压力梯度0~0.1 MPa阶段衰减最为显著,滑脱效应对渗透率的贡献远小于基质收缩效应,且随着压力梯度的增大而几乎可以忽略。  相似文献   

7.
李波波  李建华  杨康  任崇鸿  许江  高政 《煤炭学报》2019,44(11):3396-3403
在开采环境的不断变化过程中,煤岩通常处于气-水共存的状态。为了探究水分与煤岩渗透率之间的反应机制,利用等温吸附装置和含瓦斯煤热-流-固耦合三轴伺服渗流装置,分别进行不同含水条件下的等温吸附试验和孔隙压力升高的渗流试验。基于水膜与孔裂隙表面的相互作用及水膜之间分离压的影响,并且考虑压缩变形及滑脱效应对煤岩渗流的贡献率,构建考虑水分影响的渗透率模型,进而分析不同含水条件下煤岩吸附与渗流变化规律。研究结果表明:① 在不同含水条件下,煤岩瓦斯吸附量随孔隙压力增大而增大,而随含水率增大,瓦斯吸附量呈减小趋势。同时,吸附变形随着煤岩的吸附作用而变化。② 煤岩中的水分易在孔裂隙表面形成吸附性水膜占据气体渗流的通道,并且气态和液态水分子会制约瓦斯流动,因而瓦斯流量随含水率增大而减小。当煤岩含水率恒定时,渗透率随孔隙压增大先减小后趋于平缓;恒定孔隙压力条件下,渗透率随含水率增大显著减小。③ 考虑压缩变形、吸附变形、水分和孔裂隙间水膜对裂隙宽度的影响,构建了考虑瓦斯和水分耦合作用的渗透率模型,而且煤岩渗透率计算值与实测数据基本保持一致,可以较好的表征含水煤岩的渗透率变化规律。  相似文献   

8.
为探究应力-吸附-水与滑脱效应多因素综合作用下煤岩渗透率演化机制,考虑应力-吸附诱导煤岩变形的影响,修正水膜厚度表达式,并分析煤岩孔隙的动态变化。基于此,进一步量化含水煤岩气体滑脱效应的强度,建立考虑应力-吸附-水与滑脱效应多因素综合作用的煤岩渗透率模型。此外,结合煤岩渗透率试验研究,通过试验数据验证渗透率模型的可靠性,以揭示应力-吸附-水多因素综合作用下煤岩渗透率、动态水膜及滑脱因子的演化机制。研究结果表明:同一含水饱和度条件下,煤岩渗透率随有效应力增大先急剧减小后趋于平缓;同一有效应力条件下,煤岩渗透率随含水饱和度增大逐渐减小。水膜厚度在应力-吸附-水作用下动态变化,水膜厚度与应力、吸附呈负相关趋势,而与含水饱和度呈正相关趋势;随含水饱和度增大,滑脱因子逐渐增大,但在低应力条件下,增大趋势平缓,高应力条件下增大趋势急剧。此外,基于气-液-固表面分离压,推导应力-吸附作用下正方形、正三角形内动态水膜表达式,并分析不同几何形态孔隙的煤岩渗透率、动态水膜及滑脱因子演化机制的差异。其中,因角孔存在,不同几何形态孔隙内水膜厚度从大至小排序为圆形、正方形、正三角形,煤岩渗透率排序与其相反;圆形...  相似文献   

9.
川东南龙马溪组页岩孔裂隙及渗透性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
采集了川东南龙马溪组页岩样品,开展了页岩孔-裂隙结构的测试,分析了孔-裂隙结构特征,根据孔-裂隙相对发育优势程度,将页岩孔-裂隙结构分为孔隙优势发育型、裂隙优势发育型和孔-裂隙均等发育型等3种类型。在不同轴压、围压和气体压力梯度下,对页岩试样进行了三轴应力条件下的CH4渗流实验,计算并分析了有效应力、气体滑脱效应等因素对页岩绝对渗透率K0的影响。揭示出在较低压力梯度下的K0与应力差近似呈负指数相关关系,K0与压力梯度之间亦呈负指数相关关系,K0在压力梯度0~0.2 MPa阶段衰减最显著。认为有效应力增大导致页岩微裂隙趋于闭合,渗透率降低;在压力梯度增大的过程中,基质收缩逆效应与滑脱效应并存,但滑脱效应对渗透率的贡献小于基质收缩逆效应;在不同应力条件下,页岩渗透率存在差异;页岩渗透率自身也具有非均一性,与微裂隙的发育差异有关。  相似文献   

10.
为研究煤层气开采过程中温度、气体压力对煤岩吸附和渗流特性的影响,利用等温吸附试验装置与含瓦斯煤三轴渗流试验装置,分别进行等温吸附试验及不同温度条件下变气体压力的三轴渗流试验。考虑应力作用下毛细管分形特征,建立了裂隙体积应力敏感性模型,并在此基础上建立考虑煤基质内部膨胀变形、温度及气体压力变化的煤岩渗透率模型。结果表明:(1)在相同温度下,随着气体压力升高,煤岩瓦斯吸附量逐渐增大,但吸附速率呈相反趋势。在相同气体压力下,随着温度升高,瓦斯吸附量呈下降趋势。当有效应力恒定时,煤岩吸附变形量随着气体压力增大而增大,并且随着温度增大而减少。(2)在外部应力作用下,煤岩内部毛细管侧面发生收缩并产生径向延展。新建裂隙体积应力敏感性模型计算得到的裂隙压缩系数与实验室所得值在同一数量级,并随有效应力升高呈下降趋势。(3)新建渗透率模型能较好反映不同温度、气体压力下渗透率演化规律。在相同温度下,随着气体压力升高,煤岩渗透率先急剧下降后趋于平缓,孔裂隙周围基质膨胀变形对于渗透率的影响逐渐降低。  相似文献   

11.
赵瑜  王超林  曹汉  陈宇超  沈维克 《煤炭学报》2018,43(6):1754-1760
为研究孔压与温度对页岩渗流影响机理,在岩石三轴渗流仪上对页岩进行了He和CO2渗流试验。试验结果表明,He渗流下渗透率与孔压呈正相关关系;CO2渗流下渗透率随孔压增加先下降再上升;孔压通过有效应力、基质吸附膨胀及滑脱作用影响渗透率,提出了考虑3者综合作用的渗流理论模型,并进行了验证。不同温度渗流试验结果表明,页岩渗透率随温度升高先下降再上升,且围压越低,温度影响越明显;气体滑脱效应随温度升高逐渐增大;温度通过影响基质热膨胀、滑脱效应、分子热运动及吸附膨胀改变页岩渗透率,建立了考虑温度作用的渗流模型并通过试验数据进行验证,得到较好的拟合结果。  相似文献   

12.
为探究煤岩孔裂隙结构与渗透特性的联动关系,采用扫描电镜、偏光和分形等手段分析煤岩孔裂隙结构分布特征,利用自主研发的出口端正压三轴渗流装置,开展恒定有效应力条件下孔隙压力升高的渗流试验。基于分形理论,考虑煤岩表面孔隙分布情况对煤岩渗透率的影响机理,建立考虑孔裂隙分形特征的煤岩渗透率模型,通过试验验证其合理性,对煤岩孔裂隙下分形维数和渗透率耦合进行定量分析。研究结果表明:①六盘水矿区煤岩表面含有一定数量的孔隙和裂隙,其中四角田7号煤层孔裂隙发育情况最好,具有2条清晰的宽度较大的裂隙,并伴有大量交叉微裂隙及孔隙发育,煤岩结构破坏严重;②通过盒维数法可得煤岩孔裂隙分布具有明显的分形特征,且煤岩孔隙率与分形维数呈正相关关系;③恒定有效应力条件下,煤岩渗透率随孔隙压力升高呈现先急剧降低后趋于平缓的趋势,受孔裂隙结构影响,在相同的孔隙压力下煤岩渗透率存在明显差异。煤岩表面孔裂隙结构越复杂其分形维数越大,有助于瓦斯运移,渗透率呈上升趋势;④考虑孔裂隙分形特征的煤岩渗透率模型计算值与实测值吻合度较高,与前人研究成果相比,无论理论机理的适用性还是对试验点的匹配方面都更加适用,且能较好地反映孔隙压力与渗透率的联动关系。  相似文献   

13.
《煤矿安全》2016,(9):12-15
为研究瓦斯在煤层裂隙中流动规律以及瓦斯渗透率变化,使用含瓦斯煤热流固耦合实验系统对含有贯穿裂隙的煤样进行了瓦斯渗流实验。通过改变煤样两端瓦斯压力差,得到了瓦斯渗流速度和煤样两端瓦斯压力差之间的关系,求解出各瓦斯压力条件下的渗透率,然后对试验数据拟合,分析渗透率变化的原因。研究结果表明:含贯穿裂隙煤样瓦斯渗流速度随煤样两端瓦斯压力增大呈抛物线关系增加;在外载应力作用下,瓦斯在煤层裂隙中流动存在滑脱效应;随着瓦斯压力差的增大,滑脱渗透率对气测渗透率贡献率也在增大。  相似文献   

14.
为了改进渗透率模型,定量描述层理煤岩在力学变形与渗透行为上的各向异性特征,将平行层理煤岩的裂隙开度作为基准,引入了等效裂隙开度系数,将非平行层理煤岩的裂隙开度等效,提出了一种基于等效裂隙开度系数的层理煤岩渗透率演化模型。结果表明:随着层理角度增大,层理煤岩的渗透率显著降低,且层理角度越大的煤岩,随着气体压力的变化其动态渗透率变化幅度越小;有效应力与吸附效应对于渗透率的演化有显著影响,但在不同的力学边界下,二者属于竞争关系,有效应力对于渗透率的影响在恒定围岩应力边界下处于优势地位,而吸附效应则在位移固定边界条件下占据主导地位;对于层理煤岩瓦斯抽采,顺层理方向抽采可极大的提高抽采效率。  相似文献   

15.
为探究单裂隙粗糙度、开度等结构特征对煤岩体内瓦斯流动特性的影响,基于Weierstrass-Mandelbort分形函数生成不同粗糙度的裂隙轮廓曲线,构建含不同分形维数和裂隙开度的二维裂隙煤岩体模型。运用Fluent软件模拟分析裂隙分形维数、开度对裂隙内部及周边煤岩基质内瓦斯流动特性的影响,建立了可定量刻画裂隙结构特征对煤岩体相对渗流能力具有影响的流量系数双参数模型。结果表明:随着裂隙分形维数减小,裂隙开度增大,煤岩体渗流能力逐渐增强,且裂隙导流能力在煤岩体渗流过程中逐渐占优,流量占比最高达81%。随着分形维数增大,裂隙内瓦斯流动非线性强度系数呈指数型增大,影响裂隙内瓦斯流动非线性强度系数的主控因素逐渐由裂隙开度转变为分形维数,同时在煤岩基质靠近裂隙轮廓曲线离散程度较大的位置处,存在局部渗流速度增大的现象。当裂隙开度增大至1.5 mm后,裂隙分形维数对流量系数的影响起主导作用,反之,裂隙开度起主导作用。提出了流量系数与分形维数、裂隙开度的经验关系式。  相似文献   

16.
《煤矿安全》2016,(8):5-8
构造煤的孔裂隙系统对煤层气吸附、运移以及瓦斯突出均具有控制作用,选取淮北朱仙庄矿12块不同变形类型构造煤进行显微镜观测和压汞测试,并利用分形方法对样品裂隙系统、渗流孔孔隙系统及二者的关联性进行研究,结果表明:样品显微裂隙信息维数分布于1.2~1.9,孔隙分形维数分布于2.6~3.0;随着煤体变形程度增强,显微裂隙分形维数Dl线性增大,渗流孔隙分形维数Dk在脆性变形阶段变化不大,脆-韧性和韧性变形阶段呈线性减小。Dl增大,样品渗流孔孔容和比表面积呈指数增大,平均渗流孔孔隙直径减小,渗流孔发育程度提高,渗透性增强。孔隙分形维数随裂隙分形维数增大呈抛物线形式减小,以Dl=1.6为界,可根据Dl值将变形环境分为小于1.6的脆性变形环境以及大于1.6的脆-韧性/韧性变形环境。  相似文献   

17.
孔隙压力是控制煤岩渗透率的关键因素,为探究煤岩渗透率在孔隙压力升降过程的响应机制,利用含瓦斯煤三轴渗流试验装置,分别开展不同平均应力条件下孔隙压力升高和降低的渗流试验。基于煤岩具备的双孔隙结构介质的特性,综合升压过程中煤岩力学效应、滑脱效应、吸附膨胀及吸附层厚度变化等因素,构建包含基质与裂隙的双孔隙渗透率模型。通过引入修正函数L(p),进一步量化降压过程中煤岩渗透率变化情况,并利用试验数据验证新建渗透率模型的合理性。研究结果表明:(1)当平均应力一定时,基质渗透率随孔隙压力增大呈先急剧减小后缓慢减小的变化趋势,裂隙渗透率的变化规律与煤岩总渗透率的变化规律较为接近;(2)当平均应力一定时,孔隙压力升降过程中的煤岩总渗透率均呈“V”型变化,但对于同一孔隙压力,降压过程总渗透率要低于升压过程总渗透率;(3)利用渗流试验数据对模型进行验证,发现新建双孔隙渗透率模型能够与试验结果保持一致;(4)修正函数L(p)中的敏感性系数c影响渗透率随孔隙压力变化的曲线斜率,敏感性系数d影响渗透率曲线整体高度。  相似文献   

18.
《煤炭技术》2017,(2):62-64
为了研究页岩渗透性,探究影响页岩渗透率的主控因素,从页岩储层的裂隙、温度、有效应力及滑脱效应4个方面分析了页岩的渗透性。分析表明,页岩的渗透率与其裂隙宽度、裂隙的密度及其连通性有密切的关系,渗透率随裂隙的宽度和密度的增大而变大,裂隙的连通性越好,渗透率越高;页岩渗透率随温度的增加而下降;页岩储层的渗透率随有效应力增大而减小;流体的运移随滑脱效应的增强而升高。  相似文献   

19.
为探究煤层气抽采过程中温度与孔隙压力对煤岩渗透特性变化的影响,以贵州黔北煤田原煤为研究对象,利用自主研发的出口端正压三轴渗流装置,通过控制进出口气体压力分别设定3个不同压差条件,开展不同温度下改变孔隙压力的渗流试验。在当前典型的SD模型基础上结合温度引起的吸附变形、热膨胀和滑脱效应的作用,新建考虑温度和恒定外应力条件下的渗透率模型。通过试验与模型对比验证其合理性,并对有无考虑滑脱效应的渗透率计算值进行了定量分析。结果表明:①渗流试验过程中,煤岩渗透率随孔隙压力升高而降低,其渗透率下降量受温度升高影响呈现降低趋势;孔隙压力升高,煤岩渗透率受温度影响的敏感程度逐渐降低。②在试验的各孔隙压力点下,温度升高使得煤岩渗透率降低;在各温度状态下,煤岩渗透率随压差增大呈现降低趋势。③经定量分析后发现修正模型较其他两个模型更加符合试验结果,且修正模型的滑脱因子随温度升高而增大,从理论方面验证了模型的合理性。④考虑滑脱效应的煤岩渗透率曲线比不考虑滑脱效应的渗透率曲线更加符合试验结果。在不同温度条件下,前者的渗透率计算值大于后者的计算值。随孔隙压力升高,滑脱效应引起的渗透率变化量逐渐降低。  相似文献   

20.
为了研究有效应力对渗透率的影响机制,利用自主研发的煤岩瓦斯吸附-解吸-渗流平台,开展了轴压、围压同步加载条件下煤体渗透率测试试验。引入平均有效应力参数表征煤体受载状态,同时为消除试件个体差异的影响,定义了有效应力敏感系数,深入探讨有效应力对煤体渗透率的控制机理与变化规律。结果表明:瓦斯压力保持恒定时,随着有效应力增加煤体渗透率逐渐减小,其变化规律符合负指数关系;随着有效应力的增加敏感系数逐减小,且符合幂函数关系。基于敏感系数构建了煤样渗透率与有效应力的数学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号