首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
通过TG-DSC和SEM对二水草酸钴在氩气中热分解过程进行分析,研究结果表明:二水草酸钴在氩气中的热分解过程经历了两个阶段,一是在150℃~275℃之间二水草酸钴失去结晶水生成了CoC2O4;二是从300℃~450℃之间CoC2O4热分解为了金属钴。与此同时,二水草酸钴在氩气中热分解温度为347.7℃时并保温10 min,其热分解产物中有细球形颗粒物质生成。在500.0℃时并保温10 min,其热分解产物钴粉由原来的单个球形颗粒因热分解温度较高使得它们烧结连接在一起。因此,适当地控制二水草酸钴500.0℃时在氩气中的热分解条件可以获得球形钴粉颗粒。  相似文献   

2.
通过控制反应体系的pH值为9.0~9.5,制得高纯度的磷酸铵镁(MAP);利用XRD、SEM、TGA-DTA及FT-IR等技术,研究MAP的热分解行为及热解产物对氨氮的吸附性能。结果表明,在pH值为9.0~9.5的条件下可制得高纯度的MAP。将MAP在100~120°C下热解120 min,可将氨及水脱除,热解固体产物粒径变小,结晶度降低,对氨氮的吸附量达72.5 mg/g,对起始浓度为800 mg/L溶液的氨氮去除率达95%以上。吸附氨氮后,其XRD谱中主要出现MAP的特征衍射峰。循环使用结果表明,将MAP在100~120°C条件下发生热解,热解固体产物可循环用于氨氮的处理药剂。  相似文献   

3.
运用热失重法(TGA)分析研究TiH2的热分解反应性能.在真空条件下,分别以不同的升温速率加热TiH2粉末使之发生热分解,失重开始的温度大致在550~580℃范围内,随升温速率的增加变化不大,略有升高;失重结束的温度,随着升温速率的增加而升高;TiH2的失氢率随升温速率的增加而增加;随着升温速率的增加,TiH2失重所需时间减少.  相似文献   

4.
采用水热合成法,通过调整PVA的加入量实现了对合成铁酸铋的相变和形貌的控制,用X射线衍射仪(XRD)和扫描电镜(SEM)对样品进行了表征。结果表叫,少量PVA的加入会使得铁酸铋产物中Bi/Fe的摩尔比降低,但是,更多PVA的加入将使产物中Bi/Fe的摩尔比升高。加入PVA的量(16 g/L)从0 mL增大到5 mL时,对应形成的相为BiFeO_3和Bi_2Fe_4O_9,当PVA的加入量增大到10 mL和15 mL时,得到的相是Bi_(25)FeO_(40)或Bi_(46)Fe_2O_(72)。相应的,反应产物的形貌演变从块状集合中空结构和纳米片混合→纳米片→纳米片和束状结构混合→束状结构。对PVA的加入如何影响产物的相的机制进行了简单讨论。  相似文献   

5.
合成一水硬铝石热分解动力学的DSC研究   总被引:1,自引:1,他引:1  
用DSC法研究了—水硬铝石热分解过程的动力学,用Ozawa法和Kissinger法处理数据得到—水硬铝石热分解的活化能为240.9±8.0 kJ mol~(-1)。  相似文献   

6.
以PEG20000为表面活性剂在撞击流反应器中制备La2O3超细粉体的前驱体十水草酸镧(La2(C2O4)3.10H2O)。在室温至900°C下研究La2(C2O4)3.10H2O的热分解过程,通过FTIR和DSC-TG对其反应中间物及最终固体产物进行分析。结果表明,该热分解过程由5个连续的反应阶段组成。采用Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)法对活化能E进行求取,结果显示E值随着α的变化而变化,说明草酸镧的分解为复杂的热分解过程。采用多元非线性回归分析法对动力学方程和相关动力学参数进行拟合,得到动力学模型为G(α)=[1-(1+α)1/3]2。采用该动力学模型求得的活化能平均值与采用FWO法和KAS法计算而得的活化能平均值十分接近,其拟合曲线与样品的热重分析曲线吻合。  相似文献   

7.
系统地研究含钒石煤在悬浮焙烧过程中的热力学、动力学、物相转化和微观结构演变。热力学计算表明,在焙烧过程中,石煤中的碳在氧气充足的情况下燃烧并生成CO2,石煤的主要质量损失区间为600~840℃,热分解反应速率在700℃左右达到峰值。通过Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)方法验证,石煤的热分解反应由Ginstling-Brounshtein方程描述,表观活化能和指数前因子分别为136.09 k J/mol和12.40 s-1。石煤中的伊利石在650℃时失去羟基,产生脱水伊利石,绢云母结构被逐渐破坏。随着温度的升高,石煤表面变得粗糙且不规则,焙烧温度为850℃时烧结严重。  相似文献   

8.
乙酰丙酮钯(Ⅱ)的热分解行为   总被引:2,自引:0,他引:2  
采用热重-差热(TG-DTA)与气-质联用(GC-Ms)研究了CVD技术制备钯膜材料的前驱体乙酰丙酮钯[Pd(acac)2]的热分解行为。通过对比其在空气和氩气两种气氛、不同温度下的热裂解产物,认为在以乙酰丙酮钯为前驱体通过CVD技术制备钯膜时,空气比氩气更适合做载气。  相似文献   

9.
MgH2的制备及对高氯酸铵热分解过程的影响   总被引:1,自引:0,他引:1  
采用直接氢化法制备氢化镁(MgH2),运用XRD、SEM、ICP等方法对其结构进行表征。用热分析法(DSC)研究氢化镁对高氯酸铵(AP)热分解过程的影响。结果表明,5%MgH2可分别使AP的低温和高温放热分解峰温降低35.0和44.2 ℃,使AP的DSC表观分解热由0.44增加到1.20 kJ·g-1,表现出对AP热分解过程具有显著的增强促进作用。随着加入量增加,氢化镁对AP热分解的催化促进作用逐渐增强,但当氢化镁含量达到30%时,催化促进作用开始下降。氢化镁对AP热分解的催化促进作用明显强于纯镁粉。探讨了氢化镁增强促进AP热分解过程的作用机制。  相似文献   

10.
采用海藻酸钠对MAL粉末进行包埋制备水凝胶材料Hydrogel-Ⅰ,并将其应用于水中铅离子的去除。采用响应曲面法结合中心复合设计优化Hydrogel-Ⅰ的制备条件及其吸附Pb(Ⅱ)的操作条件。XPS揭示Hydrogel-Ⅰ携带的—OH、—COO—、—NH、—NH2和—CSS等官能团与Pb(Ⅱ)产生吸附结合。在吸附过程中,离子交换、表面络合、静电吸引和孔填充均发挥作用。比较Hydrogel-Ⅰ凝胶颗粒和MAL粉末对Pb(Ⅱ)的吸附性能。虽然上述两种材料具有较为接近的吸附速率和最大吸附量(qm),但Hydrogel-Ⅰ表现出更好的重复利用性,同时,更容易从水溶液中分离出来。与其他有机水凝胶材料相比,Hydrogel-Ⅰ具有较快的吸附速度和较高的吸附容量。上述结果表明,Hydrogel-Ⅰ具备较好应用潜能,可用于Pb(Ⅱ)的吸附。  相似文献   

11.
在室温下采用透射电子显微镜中汇聚的电子束辐照多壁碳纳米管。结果表明,在能量为100 keV的电子束辐照下除了碳纳米管管壁有一些弯曲外没有其他结构被破坏;当电子能量增加到200 keV时,纳米管有明显的损伤,可以观察到纳米管的无定型化、纳米管外壁的凹坑和缺口。200 keV的电子束辐照还能形成碳洋葱和2根多壁纳米管的焊接。多壁碳纳米管的离位阀能为83~110 keV。能量超过阀能的电子束可以很轻易地损伤纳米管而低于阀能的电子束则很难损坏纳米管,其损伤机理为溅射和原子离位。  相似文献   

12.
研究了添加有阴离子表面活性剂十二烷基苯磺酸钠(C18H29NaO3S)的无机阻燃剂镁铝水滑石纳米晶的制备及其热分解机理.采用常压下一步反应的液相法制备试样,得到了厚度小于10 nm的近似圆片状镁铝水滑石纳米晶体.研究发现增大十二烷基苯磺酸钠添加量,(003)晶面间距有被逐渐撑开的趋势.依据DSC和TG测试结果,确定制备得的镁铝水滑石纳米晶热分解由2个吸热峰组成,第1个出现在230℃左右,第2个出现在405℃左右;通过添加十二烷基苯磺酸钠,可以增大镁铝水滑石纳米晶的第1次和第2次热分解失重值、提高第2次热分解的终止温度点、拓宽镁铝水滑石的热分解温度范围,从而增强镁铝水滑石阻燃剂的阻燃性能.根据不同升温速率下获得的DSC测试数据,应用Achar微分法、Coats-Redfern积分法和Kissinger微分法对镁铝水滑石纳米晶的热分解进行了动力学计算和分析,确定其热分解第2个阶段的热分解机理函数积分式为(1-α)-1-1.  相似文献   

13.
为了开发和应用白云鄂博混合型稀土精矿的先进冶炼技术,采用Kissinger公式、TGA-DSC和XRD等分析方法,研究在氮气氛下白云鄂博混合型稀土精矿的热分解行为,包括热分解动力学、物相变化规律、铈氧化效率以及物相变化对稀土浸出率的影响。结果表明:在500~550℃焙烧时,焙烧质量损失率约10%、热分解活化能(Ea)为148 k J/mol。550℃焙烧2 h,白云鄂博混合型稀土精矿中氟碳铈矿完全分解,并转化为稀土氧化物和氟氧化物,铈氧化率最大值为0.58%。600℃焙烧2 h,稀土最大浸出率达49.1%。  相似文献   

14.
为了研究纳米非晶合金CoB颗粒对推进剂热分解的影响。采用KBH4还原法在乙二醇溶剂制备了分散均匀的、粒径约为5nm左右的CoB合金粉,并与在水溶剂中制备得到的CoB纳米粉进行了比较,采用XRD、TEM、SAED对其晶相和形貌进行了分析。另外,采用DSC研究了纳米CoB合金粉对AP热分解的催化性能,利用靶线法研究其对AP基固体推进剂的燃烧性能的影响。结果表明:分散均匀的纳米CoB合金粉对AP的热分解有很好的催化活性,同时对AP基固体推进剂的燃烧性能也有较强的影响。2%(质量分数)的CoB粉,可使AP的分解峰峰温提前113.3℃,表观分解热增加0.660kJ/g;并能使改性推进剂的燃速大幅提高,压力指数从0.57降低到0.46(5~11MPa)。  相似文献   

15.
拟薄水铝石溶胶中加入Eu(NO3)3后,采用喷雾干燥拟薄水铝石干凝胶。通过TG-DSC、XRD和FETEM等方法,对比分析了Eu离子对拟薄水铝石相变和微结构的影响机理。结果表明,掺杂Eu离子使拟薄水铝石相变过程中γ-Al2O3→θ-Al2O3和θ-Al2O3→α-Al2O3的相变温度分别提高了172o C和13o C。Eu3+离子全部进入γ-Al2O3和θ-Al2O3晶格,并提高了γ-Al2O3结晶度,因此提高γ-Al2O3→θ-Al2O3相变温度。相变生成α-Al2O3时,Eu离子全部以Eu A112O19存在于α-Al2O3晶界间阻止了Al3+体相扩散,因此导致θ-Al2O3→α-Al2O3相变温度升高。  相似文献   

16.
李继光  赵志江 《金属学报》1999,35(10):1099-1102
研究了碳酸铝铵的合成,并对碳酸铝铵加热过程中的物相变化和α-Al2O3籽晶对θ-Al2O3→α-Al2O3的相变的影响进行了分析。结果表明,将硫酸铝铵溶液以小于20mL/min的速度滴入碳酸氢铵溶液,可以合成颗粒尺寸小于5nm的碳酸铝铵浓沉淀。不含籽晶的碳酸铝铵煅烧时θ-Al2O3→α-Al2O3相变温度为1100℃,获得的α-Al2O3粒径约为70nm;质量分数的5%的α-Al2O3籽晶可将该相  相似文献   

17.
研究黄铜矿的相变及其相态对细菌浸出的影响。在高纯氩气的保护下,将天然黄铜矿加热到不同的温度(203、382和552°C)以完成相变。并将黄铜矿在相变前后进行生物浸出实验。结果表明,在203°C和382°C加热的黄铜矿仍处于α相区,而在552°C下黄铜矿由α相转变为β相,3种不同温度相变后的黄铜矿的浸出率分别为32.9%、40.5%和60.95%。黄铜矿晶格增大、晶格能降低,这是浸出率显著提高的根本原因。电化学实验表明,随着退火温度的升高,极化电阻降低,腐蚀电流密度增加;黄铜矿的氧化率越高,浸出率就越高。  相似文献   

18.
制备了三种名义成分分别为Ni_(50)Ti_(50)、Ni_(49)Ti_(49)Fe2和Ni45Ti51.8Fe3.2(摩尔分数,%)的不同NiTi基合金来揭示Fe的添加对NiTi形状记忆合金相变行为的影响。采用光学显微分析法、透射电子显微分析法、X射线衍射和差示扫描量热法对这些合金的组织和相变行为进行分析。结果表明,Ni_(50)Ti_(50)合金的基体由B19′马氏体相和B2奥氏体相组成。而且,在B19′相中可以观察到孪晶亚结构。然而,三元NiTi Fe合金的组织则为B2奥氏体相。这两种合金的基体中弥散分布着大量的Ti2Ni沉淀相。NiTi形状记忆合金中添加Fe后导致三元合金的相变温度下降。由机理分析可以得到如下结论:这一现象主要是由原子的弛豫引起的,弛豫会导致相变过程中B2相的稳定化。  相似文献   

19.
利用磁场辅助制备的合金综合性能优异,广泛应用在工业生产、交通运输、航空航天等领域。不同磁场参数环境下合金硬度、耐磨性等服役性能有所差异,作用机理复杂多变。对新工艺驱动下不同磁场对金属凝固过程的作用规律进行总结, 弥补目前磁场辅助金属表面加工方法的研究短板,对金属表面工程发展有重大意义。归纳科研人员在不同磁场环境对金属表面加工的研究探索,分析对比金属材料在不同类型磁场环境下的晶核形核和生长过程差异,总结金属凝固过程在不同磁场下的变化规律,如晶界形貌改善、形核率提高、晶粒细化等。从晶粒微观形貌和合金宏观性能表现两方面出发,分析磁场作用下熔体内部传热传质变化,揭示稳恒磁场、脉冲磁场和交变磁场对金属凝固影响的作用机理,讨论不同参数的磁场对熔体作用效果差异,如磁场对熔池内部流动扰动、熔体内带电粒子受到的洛伦兹力等。综上,晶粒细化、合金性能提高是磁场作用下熔池传热传质变化和磁场作用力的综合体现。综合研究对比稳恒磁场、脉冲磁场和交变磁场对金属凝固的作用特点和作用机理,综述金属凝固领域当前热点问题,有助于统一磁场环境下金属凝固机理的争论,填补磁场环境下金属表面加工工艺的空白,对推进高性能金属表面制备研究有借鉴意义。  相似文献   

20.
探讨钛铁矿氧化过程中的物相转化、形貌改变及其氧化机理。在700~800°C时,钛铁矿(FeTiO3)转变为赤铁矿(Fe2O3)和金红石(TiO2),当温度高于900°C时,三价铁板钛矿开始形成。原始的钛铁矿粉末呈现顺磁性,但是经过中温(800~850°C)氧化后,氧化产物呈现弱铁磁性。同时,讨论钛铁矿的氧化机理。通过对微结构的观察,发现在中温氧化过程中颗粒表面出现大量微孔,其在氧化过程中能够强化氧的传质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号