首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, an integrated process of steam biomass gasification and a solid oxide fuel cell (SOFC) is investigated energetically to evaluate both electrical and energy efficiencies. This system is conceptualized as a combined system, based on steam biomass gasification and with a high temperature, pressurized SOFC. The SOFC system uses hydrogen obtained from steam sawdust gasification. Due to the utilization of the hydrogen content of steam in the reforming and shift reaction stages, the system efficiencies reach appreciable levels. This study essentially investigates the utilization of steam biomass gasification derived hydrogen that was produced from an earlier work in a system combines gasifier and SOFC to perform multi-duties (power and heat). A thermodynamic model is developed to explore a combination of steam biomass gasification, which produces 70–75 g of hydrogen/kg of biomass to fuel a planar SOFC, and generate both heat and power. Furthermore, processes are emerged in the system to increase the hydrogen yield by further processing the rest of gasification products: carbon monoxide, methane, char and tar. The conceptualized scheme combines SOFC operates at 1000 K and 1.2 bar and gasifier scheme based on steam biomass gasification which operates close to the atmospheric pressure, a temperature range of 1023–1423 K and a steam-biomass ratio of 0.8 kmol/kmol. A parametric study is also performed to evaluate the effect of various parameters such as hydrogen yield, air flow rate etc. on the system performance. The results show that SOFC with an efficiency of 50.3% operates in a good fit with the steam biomass gasification module with an efficiency, based on hydrogen yield, of 55.3%, and the overall system then works efficiently with an electric efficiency of ∼82%.  相似文献   

2.
Syngas production from biomass resources suggest considerable privileges to attain energy sustainability in future. Design and control strategies are essential to extend the technology of biomass gasifiers, which require reliable model developments. The overarching contribution of this study is to develop and evaluate a three-stage biomass gasifier model. The model consists of three successive sub-models for drying and pyrolysis, partial oxidation and char reduction reactors. The pyrolysis of raw material is simulated based on the ligno-cellulosic structure of the biomass by adopting comprehensive kinetic rate modelling approach. The partial oxidation sub-model is built by axis-symmetric 2D transport equations including detailed chemical scheme. Char reduction sub-model is extended based on axis-symmetric 2D DPM model accompanied by appropriate chemical kinetic scheme considering heterogeneous and homogeneous reactions. Accuracy of each sub-model is separately verified by comparison with available numerical and experimental data. Moreover, the correctness and predictability of the complete gasifier model is evaluated using two experimental reports. For both cases, investigations demonstrate high resolution agreement between the results of the developed model and available experimental measurements both thermally and chemically. Furthermore, a parametric analysis is conducted to investigate the gasifier performance against the variations of the main system operating parameters including the type of the feeding biomass and its moisture content, equivalence ratio and air initial temperature. Based on the results, higher volatiles mass fractions and lower char mass fraction have been produced from pyrolyzing of hardwood in comparison with beech wood. Also, Results reveal that with increase of the moisture content from 15% to 35%, syngas LHV and cold gas efficiency reduce by 1.9559 MJ. kg?1 and 25.78% respectively, while H2 mole fraction at the gasifier outlet rises by 0.90%. On the contrary, growth of equivalence ratio from 2 to 10 leads to the drastic increase of syngas LHV by 5.6404 MJ. kg?1, however, cold gas efficiency peaks to 82.75% at the equivalence ratio of 4. Besides, varying the inlet air temperature over a range of 500 K–1300 K causes 0.6938 MJ. kg?1 growth of syngas LHV as well as 9.43% rise of cold gas efficiency.  相似文献   

3.
The aim of this work is to experimentally and numerically analyze the performance of a integrated power plant composed by a steam oxygen fluidized bed biomass gasifier fed by woods, a Solid Oxide Fuel Cell (SOFC) and a micro Gas Turbine (mGT). The numerical analysis is carried out by using ChemCAD software. In particular, SOFC and gasifier were modeled using proper developed Fortran subroutines interfaced to the basic software. The adopted SOFC model was already validated by the authors in previous works, while the gasifier model was here developed and validated by means of experimental activities carried out by using a bench scale gasifier. Different compounds (Benzene, Toluene, Naphthalene, Phenols) were chosen to analyze the tar evolution in the gaseous stream during the gasification process. Hot gas cleaning (based on catalytic ceramic filter candles inserted in the freeboard of the gasifier – UNIQUE concept) was adopted to remove tar and particulates from the fuel hot gas stream. Different moisture contents in the range between 10 and 30% (i.e. in a deviation of 10% around the usual wood moisture content of 20%) were numerically simulated as well as the degree of purity of the oxygen utilized in the power plant (between 25% and 95%, the rest being N2). The power requirement for pure oxygen production leads to a reduction of the electrical efficiency of the whole power plant. For this reason, a sensitivity analysis was conducted to find the optimal operation conditions in order to maximise the syngas (H2, CO) content in the produced gas, while maintaining a high overall electrical efficiency.  相似文献   

4.
Biomass gasification can be efficiently integrated with Solid Oxide Fuel Cells (SOFCs) to properly deploy the energy content of this renewable source and increasing the ratio of electric to thermal converted energy. The key objective of this work is to analyze in a systematic and wide process the integration of a biomass gasifier process with the SOFC operation. In particular the work aims at identifying the role of SOFC H2 utilization as a basic parameter to maximize the system output and avoid gasifier bad operation issues such as tar production and carbon deposition. An efficient simulation framework is used to that purpose allowing for a detailed analysis of the influence of key driving parameters. The performance of the integrated system is thoroughly analyzed in the range of 1–2 kW electric power by also varying the input biomass characteristics in terms of Moisture Content (MC). Results show how a variation of the SOFC H2 utilization, a parameter whose effects are also correlated with the gasifier air requirement, affects electrical power output also depending on the biomass Moisture Content.  相似文献   

5.
A model of downdraft gasifier has been described considering thermodynamic equilibrium of species in the pyro-oxidation zone and kinetically controlled reduction reactions in the reduction zone. It is found that the sole use of cow dung as the gasifier fuel is not technically feasible. This is due to very low heating value of the producer gas with much carbon leaving the gasifier as char. However, cow dung can be used as a supplementary fuel blended with a conventional woody biomass, like sawdust. The increased fraction of cow dung in the fuel blend renders the gasification process less efficient, when the gasifier is operated at a particular equivalence ratio. Both the producer gas production rate and its heating value reduce with the increase in the cow dung content in the biomass fuel blend, leading to an overall reduction in the gasifier conversion efficiency. It is observed that an increase in the cow dung content from 0 to 90% in the blended fuel reduces the heating value by 46.8% and the conversion efficiency by 45%. The use of cow dung in between 40 and 50% by mass in the fuel mix would result in an overall fuel economy.  相似文献   

6.
To recover the waste heat from solid oxide fuel cell (SOFC) and improve the overall electrical efficiency, a new integrated power system driven by SOFC is proposed to achieve the cascade energy utilization. This system integrates an SOFC–GT system with an organic Rankine cycle (ORC) using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. Based on the mathematical model, a parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. The results indicate that the overall electrical efficiency of 67% can be easily achieved for the current system, which can be further improved with parametric optimization. An increase in fuel flow rate of SOFC can raise the net power output, but it has a negative effect on SOFC and overall electrical efficiency. The compressor pressure ratio contributes to an increase in SOFC and overall electrical efficiency, which are contrary to the effects of air flow rate and steam-to-carbon ratio. Under the given conditions, compared with the Kalina sub-system, the ORC sub-system produces 12.6% more power output by utilizing the cryogenic energy of LNG with simple configuration.  相似文献   

7.
Solid oxide fuel cell (SOFC) is a potential technology for utilizing biomass to generate electricity with high conversion efficiency and low pollution. Investigations on biomass integrated gasification SOFC system show that gasifier is one of the high cost factors which impede the practical application of such systems. Direct carbon solid oxide fuel cell (DC-SOFC) may provide a cost effective option for electricity generation from biomass because it can operate directly using biochar as the fuel so that the gasification process can be avoided. In this paper, the feasibility of using corn cob char as the fuel of a DC-SOFC to generate electricity is investigated. Electrolyte-supported SOFCs, with yttrium stabilized zirconia (YSZ) as the electrolyte, cermet of silver and gadolinium-doped ceria (GDC) as the anode and the cathode, are prepared and tested with fixed bed corn cob char as fuel and static ambient air as oxidant. The maximum power output of a DC-SOFC operated on pure corn cob char is 204 mW cm−2 at 800 °C and it achieves 270 mW cm−2 when Fe of 5% mass fraction, as a catalyst of the Boudouard reaction, is loaded on the corn cob char. The discharging time of the cell with 0.5 g corn cob char operated at a constant current of 0.1 A lasts 17 h, representing a fuel conversion of 38%. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Raman spectroscopy have been applied to characterize the char-based fuels.  相似文献   

8.
A solar-powered biomass steam gasification system was developed, in which heat transfer model, flow model and chemical model were constructed to predict the distributions of temperature, pressure, mole fraction of syngas, and solar incident flux. Several key parameters of gasifier were designed to ensure the fluidization stability. Based on the model validation, gasifier performance simulations in the design working conditions were obtained. The effects of the key variable parameters, including the rim angle of the dish collector, steam-to-biomass mass flow ratio, biomass feeding rate and the solar irradiance in the different operation working conditions on the composition of syngas, lower heating value, and efficiencies were investigated. The results reveal that the coupled system implements the best gasification performance in the design conditions which the rim angle, steam-to-biomass mass flow ratio, and biomass feeding rate are set at 60°, 0.4, and 2.5 g/min, while the LHV, carbon conversion, and gasification energy efficiencies are 11.51 MJ/m3, 78.17%, and 93.01%, respectively. The overall energy efficiency considering solar energy is 30.79%.  相似文献   

9.
To utilize low-rank coal and biomass in a highly efficient and environmental-friendly manner, a co-pyrolysis system coupled with char gasification is investigated. This system has five main units, namely, the drying and mixing, pyrolysis, cooling and separation, combustion, and gasification units, which are simulated by ASPEN plus based on experimental data. Results show that 37% of the pyrolysis char is burned to supply heat for pyrolysis and drying processes based on cascade utilization of heat energy, whereas the rest is sent to a gasifier. The sensitivity analysis is performed to investigate the impacts of steam and O2 injection on gas composition, gasification temperature, carbon conversion efficiency, heating value of gas during gasification, and gas production efficiency. The fractions of H2, CH4, CO, and CO2 demonstrate diverse variation tendencies with an increasing equivalence ratio and steam-to-char (S/C) ratio. However, carbon conversion efficiency reaches its peak of 99.91% when the equivalence ratio is approximately 4 regardless of S/C ratio. An equivalence ratio of 4 and S/C ratio of 0.15 are used as decent examples to calculate the mass balance and to simulate the overall system. Results show that 1000 kg/h coal and 500 kg/h biomass can produce 285.83 m3/h pyrolysis gas and 2580.78 m3/h gasification gas with low heating values of 8.20 and 9.746 MJ/m3, respectively.  相似文献   

10.
Biomass gasification, conversion of solid carbonaceous fuel into combustible gas by partial combustion, is a prominent technology for the production of hydrogen from biomass. The concentration of hydrogen in the gas generated from gasification depends mainly upon moisture content, type and composition of biomass, operating conditions and configuration of the biomass gasifier. The potential of production of hydrogen from wood waste by applying downdraft gasification technology is investigated. An experimental study is carried out using an Imbert downdraft biomass gasifier covering a wide range of operating parameters. The producer gas generated in the downdraft gasifier is analyzed using a gas chromatograph (NUCON 5765) with thermal conductivity detector (TCD). The effects of air flow rate and moisture content on the quality of producer gas are studied by performing experiments. The performance of the biomass gasifier is evaluated in terms of equivalence ratio, composition of producer gas, and rate of hydrogen production.  相似文献   

11.
A model of a downdraft gasifier has been developed based on chemical equilibrium in the pyro‐oxidation zone and finite rate kinetic‐controlled chemical reactions in the reduction zone. The char reactivity factor (CRF) in the reduction zone, representing the number of active sites on the char and its degree of burn out, has been optimized by comparing the model predictions against the experimental results from the literature. The model predictions agree well with the temperature distribution and exit gas composition obtained from the experiments at CRF=100. A detailed parametric study has been performed at different equivalence ratios (between 2 and 3.4) and moisture content (in the range of 0–40%) in the fuel to obtain the composition of the producer gas as well as its heating value. It is observed that the heating value of the producer gas increases with the increase in the equivalence ratio and decrease in the biomass moisture content. The effect of divergence angle of the reduction zone geometry (in the range of 30–150°) on the temperature and species concentration distributions in the gasifier has been studied. An optimum divergence angle, giving the best quality of the producer gas, has been identified for a particular height of the reduction zone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Biomass reformation is an interesting path for hydrogen production and its use for efficient energy generation. The main target is the fully exploitation of the potential of renewable fuels. To this aim, the coupling a biomass reformer together with a high temperature solid oxide fuel cell (SOFC) stack shows some advantages for the similar operating temperature of the two processes and the internal reforming capability of the SOFC. The latter further allows less stringent composition requirements of the feed gas from a gasifier and internal cooling of the SOFC.In this work, a complete model of a SOFC coupled with a biomass gasifier is used to identify the main effects of the operating conditions on the fuel cell performance.The gasification process has been simulated by an equilibrium model able to compute the reformate composition under different operating conditions, whereas a 3D fluid dynamics simulation (FLUENT) coupled with an external model for the electrochemical reactions has been used to predict the fuel cell performance in terms of electrical response and mass-energy fluxes.A 14 kW integrated SOFC-gasifier system has been analysed with this model to address the response of a planar SOFC as a function of the gasifier operating conditions.  相似文献   

13.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

14.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent.  相似文献   

15.
Two zone equilibrium and kinetic free model proposed by the authors in their earlier work [Ratnadhariya JK, Channiwala SA. Two zone equilibrium and kinetic free modeling of gasifier. Proceedings of the 12th European Conference and Technical Exhibition on Biomass for Energy, Industry and Climate Protection. Amsterdam, The Netherlands; 2002. p. 813–816], offers gas composition, temperature profile and gasifier performance parameters for two zones. This model does not predict composition and temperature profile of pyrolysis zone, which is stated to be a precursor for gasification. Looking to this fact a three zone equilibrium and kinetic free model of biomass gasifier is proposed in the present work. In this three zone: first zone of the model is drying and pyrolysis zone combined together; second zone is oxidation zone; and the third zone is the reduction zone. Each zone has been formulated with: (i) reaction stoichiometry; (ii) constituent balance; and (iii) energy balance along with a few justifying assumptions. This model clearly provides an operating range of equivalence ratio and moisture content for the woody biomass materials. Further, this model facilitates the prediction of the maximum temperature in the oxidation zone of gasifier, which provides useful information for the design of the gasifier and selection of the material for the construction. The merits of the model lies in the fact that it is capable of handling predictions for all category of biomass materials with a wide operating range of equivalence ratio and moisture content in all of the three principal zones of the gasifier.  相似文献   

16.
A new integrated power generation system driven by the solid oxide fuel cell (SOFC) is proposed to improve the conversion efficiency of conventional energy by using a Kalina cycle to recover the waste heat of exhaust from the SOFC-GT. The system using methane as main fuel consists an internal reforming SOFC, an after-burner, a gas turbine, preheaters, compressors and a Kalina cycle. The proposed system is simulated based on the developed mathematical models, and the overall system performance has been evaluated by the first and second law of thermodynamics. Exergy analysis is conducted to indicate the thermodynamic losses in each components. A parametric analysis is also carried out to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that as compressor pressure ratio increases, SOFC electrical efficiency increases and there is an optimal compressor pressure ratio to reach the maximum overall electrical efficiency and exergy efficiency. It is also found that SOFC electrical efficiency, overall electrical efficiency and exergy efficiency can be improved by increasing air flow rate. Also, the largest exergy destruction occurs in the SOFC followed by the after-burner, the waste heat boiler, the gas turbine. The compressor pressure ratio and air flow rate have significant effects on the exergy destruction in some main components of system.  相似文献   

17.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
An energy analysis of solid oxide fuel cell (SOFC) power systems with gas recycles fed by natural gas is carried out. Simple SOFC system, SOFC power systems with anode and cathode gas recycle respectively and SOFC power system with both anode and cathode gas recycle are compared. Influences of reforming rate, air ratio and recycle ratio of electrode exhaust gas on performance of SOFC power systems are investigated. Net system electric efficiency and cogeneration efficiency of these power systems are given by a calculation model. Results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 44% and a system cogeneration efficiency including waste heat recovery of 68%. For SOFC power system with anode gas recycle, an electrical efficiency is above 46% and a cogeneration efficiency of 88% is obtained. In the case of cathode gas recycle, an electrical efficiency and a cogeneration efficiency is more than 51% and 78% respectively. Although SOFC system with both anode and cathode gas is more complicated, the electrical efficiency of it is close to 52%.  相似文献   

19.
A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV).  相似文献   

20.
《能源学会志》2020,93(1):99-111
This paper reports gasification of coal/biomass blends in a pilot scale (50 kWe) air-blown circulating fluidized bed gasifier. Yardsticks for gasification performance are net yield, LHV and composition and tar content of producer gas, cold gas efficiency (CGE) and carbon conversion efficiency (CCE). Net LHV decreased with increasing equivalence ratio (ER) whereas CCE and CGE increased. Max gas yield (1.91 Nm3/kg) and least tar yield (5.61 g/kg of dry fuel) was obtained for coal biomass composition of 60:40 wt% at 800 °C. Catalytic effect of alkali and alkaline earth metals in biomass enhanced char and tar conversion for coal/biomass blend of 60:40 wt% at ER = 0.29, with CGE and CCE of 44% and 84%, respectively. Gasification of 60:40 wt% coal/biomass blend with dolomite (10 wt%, in-bed) gave higher gas yield (2.11 Nm3/kg) and H2 content (12.63 vol%) of producer gas with reduced tar content (4.3 g/kg dry fuel).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号