首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the influence of alkali pretreatment on the enzymatic hydrolysis and efficiency of anaerobic digestion of lignocellulosic biomass pretreated both in a one- (chemical or enzymatic) and two-step (chemical and enzymatic) process. In this study two species of energy crops were used Miscanthus giganteus and Sida hermaphrodita. The aim of this work was to compare biogas production and methane yield during fermentation of pretreated and untreated energy crops. The results show that alkali pretreatment is necessary for the effective biogas generation from plant material due to high delignification level and significant hemicellulose degradation. The two-step hydrolysis process consisting on the alkali and enzymatic step leads to the release of high concentrations of glucose (about 20 g L−1). The best results were achieved for M. giganteus with biogas production yield of 421.5 Ndm3 kg TS−1 and with methane production yield of 257 Ndm3 kg TS−1.  相似文献   

2.
This study examined the energy yield of hemp (Cannabis sativa L.) cultivated for energy purposes under cold climate conditions in Northern Europe. Split-plot field trials were carried out over three consecutive years to investigate different nitrogen fertilisation regimes. Dry matter yield per hectare, moisture content, hydrogen content and heating value were determined at roughly monthly intervals from July until the following spring every season. The energy yield was calculated and adjusted for a fair comparison with those of other energy crops commonly grown in the study region.Two harvest periods for optimal energy yield have been determined; harvest in September to October, when the hemp is used for biogas production, yielded 14.4 Mg ha−1 and 296 GJ ha−1; harvest in February to April, when the hemp is used as a solid fuel, yielded 9.9 Mg ha−1 and 246 GJ ha−1. For biogas production, the adjusted biomass energy yield of hemp was similar to that of maize and sugar beet and 24 and 14% greater than that of lucerne and clover-grass ley, respectively. As a solid fuel, the adjusted biomass energy yield of hemp was 120% higher than that of wheat straw and similar to that of reed canary grass. Annual variations in dry matter yield depending on weather conditions and sowing dates exceeded variations due to nitrogen fertilisation.Hemp is suitable as an energy crop in cold climate regions of Northern Europe, as it has similar or often higher energy yields than other common energy crops grown in these regions.  相似文献   

3.
Sweet sorghum (Sorghum bicolor L. Moench) is a widely adapted sugar crop with high potential for bioenergy and ethanol production. Sweet sorghum can yield more ethanol per unit area of land than many other crops especially under minimum input production. Sweet sorghum is well-adapted to marginal growing conditions such as water deficits, water logging, salinity, alkalinity, and other constraints. Sweet sorghum potential exists for ethanol yield of 6000 L ha−1 with more than three units of energy attained per unit invested. Traditionally, sweet sorghum has served as a syrup crop and its culture and production are well understood. Sweet sorghum is genetically diverse and variations exits for characteristics such as Brix % (13–24), juice sucrose concentration (7.2–15.5%), total stalk sugar yield (as high as 12 Mg ha−1), fresh stalk yield (24–120 Mg ha−1), biomass yield (36–140 t ha−1) and others indicating potential for improvement. Transitioning sweet sorghum to a bioenergy crop is hampered by inadequate technology for large-scale harvest, transport and storage of the large quantities of biomass and juice produced, especially where the harvest window is short. Conversion of sweet sorghum to ethanol can be achieved by fermenting juice expressed from stems or directly fermenting chopped stalks. Integration of the fermentation and distillation of sweet sorghum juice in corn ethanol plants has not yet been achieved.  相似文献   

4.
《Biomass & bioenergy》2006,30(5):405-421
Biomass production is a promising alternative for the Czech Republic's (CZ) agricultural sector. Biomass could cover the domestic bio-energy demand of 250 PJ a−1 (predicted for 2030), and could be exported as bio-fuels to other EU countries. This study assesses the CZ's biomass production potential on a regional level and provides cost–supply curves for biomass from energy crops and agricultural and forestry residues. Agricultural productivity and the amount of land available for energy crop production are key variables in determining biomass potentials. Six scenarios for 2030 with different crop-yield levels, feed conversion efficiencies and land allocation procedures were built. The demand for food and fodder production was derived from FAO predictions for 2030. Biomass potential in the CZ is mainly determined by the development of food and fodder crop yields because the amount of land available for energy crop production increases with increasing productivity of food and fodder crops. In most scenarios the NUTS-3 regions CZ020, 31 and 32 provided the most land for energy-crop production and the highest biomass potentials. About 110 PJ a−1, mostly from agricultural and forestry residues, can be provided from biomass when the present Czech agricultural productivity is maintained. About 195 PJ a−1 (105 PJ from energy crops) can be provided when production systems are optimised with regard to fertilizer regimes and 365 PJ a−1 (290 PJ from energy crops) when the yield level of Dutch agriculture is reached. Costs for woody biomass decrease with increasing plantation yield and range between 2.58 and 4.76  GJ−1. It was concluded that Czech agriculture could provide enough biomass for domestic demand and for export if agricultural productivity is increased.  相似文献   

5.
The biomass production dynamics of catch crops, volunteers and weeds in dependence on precipitation and air temperature, was studied in central Bohemia from 2004 to 2006. The cover of individual components of the growth was monitored during the same period. Also measured were energy and efficiency of utilization of global radiation by catch crops and volunteers. The catch crops included the following species: Brassica napus, Lolium multiflorum, Lolium perenne, Phacelia tanacetifolia, Sinapis alba, Trifolium incarnatum, Raphanus sativus var. oleiformis and Trifolium subterraneum. The highest biomass production and the highest cover of catch crops were observed in treatments with S. alba (1382.0 kg ha−1, 47.8%). The average biomass production (sum of catch crops, volunteers and weeds) was highest in treatments with S. alba, R. sativus, and P. tanacetifolia and lowest in treatments with B. napus, L. multiflorum and L. perenne. It was demonstrated that an increase in the percentage share of volunteers caused a decrease in the biomass production of catch crops. The average energy production ranged from 0.31 to 2.37 MJ m−2 in treatments with catch crops, and from 0.25 to 0.89 MJ m−2 in treatments with cereal volunteers. The highest effectivity of global radiation utilization, was determined in treatments with S. alba (0.11-0.47%). Based on regression analysis the closest dependence between biomass production from all treatments on the experimental site and precipitation was observed from 1st May till the time of sowing and the average air temperatures from the sowing period till the time of the last biomass production assessment.  相似文献   

6.
The halophyte species Sea Aster (Tripolium pannonicum) was grown with different concentrations of artificial seawater. In a second experiment, T. pannonicum was cultivated with a nutrient solution containing different concentrations of NaCl. This halophyte biomass was used to determine the biogas production potential. According to the findings, it is possible to produce high yields of methane using biomass from halophytes cultivated in the presence of salt. Biogas and methane yield are influenced by the salt content of the plant tissue, however, high concentrations of salt in the anaerobic reactors itself inhibit the biogas and methane production. The highest methane yield is obtained using plant substrates grown at 22.5 g L−1 sea-salt with a value of 313 cm3 g−1 of VS. When treating T. pannonicum with different concentrations of NaCl, biogas and methane yields are highest when using plant substrates grown at 30 g L−1 to produce values of 554 cm3 g−1 of VS and 447 cm3 g−1 of VS, respectively. Other research was carried out to study the effect of sodium on the biogas and methane yields using substrate from T. pannonicum cultured under non-saline conditions and adding different amounts of NaCl to the anaerobic reactors. Adding NaCl to the reactors decreases the biogas and methane production but using a salt-adapted inoculum increases the biogas yield in comparison to the non-adapted inoculum.  相似文献   

7.
In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the residues from most developing countries remain sparse. In this study the theoretical bioenergy potentials (bioethanol and biogas) of a spectrum of West African agricultural residues were estimated based on their compositions. We analysed 13 of the most common residues: yam peelings, cassava peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. The yam peelings showed the highest methane and bioethanol potentials, with 439 L methane (kg Total Solids)−1 and 0.61 L bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West African agricultural residues.  相似文献   

8.
《Biomass & bioenergy》2007,31(5):308-317
Cereal grain yield and biomass production are affected by fertilizer application strategies. In order to quantify the performance of wheat, rye and triticale cultivars for use as energy crops, field experiments with either modified phosphorus–potassium or potassium applications were designed at two locations in Denmark over a 3-year period. Five wheat cultivars (‘Astron’, ‘Herzog’, ‘Kosack’, ‘Kraka’ and ‘Ure’), two winter rye cultivars (the population cultivar ‘Motto’ and the hybrid cultivar ‘Marder’) and the triticale cultivar ‘Alamo’ were selected. The grain and straw fractions were analysed for biomass, ash and contents of nitrogen (N), K, Cl, sulphur (S) and Na.Dry matter yields varied between 11.5 and 15.9 t ha−1 at the two locations. Triticale and rye had a higher total dry matter yield than wheat, even at lower inputs of N fertilizer. Thus, the constant high yield of rye and triticale is an advantage for biomass for energy purposes. The mineral content of the grain fraction changed only little between years and locations. By contrast, large variations in the analysed ions in the straw fraction between years and locations were observed. The use of K fertilizers resulted in a significantly increased concentration of K in the straw. However, this increased concentration was eliminated in years with high precipitation in the final 3 weeks before harvest, where substantial amounts of K, Cl and S were removed. The results are discussed in relation to the possible use of grain crops for energy production.  相似文献   

9.
Blue mussels and reeds were explored as a new biomass type in the Kalmar County of Sweden to improve renewable transport fuel production in the form of biogas. Anaerobic digestion of blue mussels and reeds was performed at a laboratory-scale to evaluate biogas production in a two-stage dry digestion system. The two-stage system consisted of a leach bed reactor and an upflow anaerobic sludge blanket (UASB) reactor. The two-stage system was efficient for the digestion of blue mussels, including shells, and a methane yield of 0.33 m3/kg volatile solids (VS) was obtained. The meat fraction of blue mussels was easily solubilised in the leach bed reactor and the soluble organic materials were rapidly converted in the UASB reactor from which 68% of the methane was produced. However, the digestion of mussels including shells gave low production capacity, which may result in a less economically viable biogas process. A low methane potential, 0.22 m3/kg VS, was obtained in the anaerobic two-stage digestion of reeds after 107 days; however, it was comparable to similar types of biomass, such as straw. About 80% of the methane was produced in the leach bed reactor. Hence, only a leach bed reactor (dry digestion) may be needed to digest reed. The two-stage anaerobic digestion of blue mussels and reeds resulted in an energy potential of 16.6 and 10.7 GWh/year, respectively, from the estimated harvest amounts. Two-stage anaerobic digestion of new organic materials such as blue mussels and reeds can be a promising biomass resource as land-based biomass start to be limited and conflict with food resources can be avoided.  相似文献   

10.
The use of perennial biomass crops is expected to increase and will likely be part of a diversified approach to cropping system design that focuses on multiple economic, ecological, and environmental benefits. Field experiments were conducted from 2006 to 2011 at three locations in Minnesota to quantify biomass production across a diverse set of perennial herbaceous and woody crops. Herbaceous crops were harvested annually in the fall while the woody crops were harvested once following five years of growth. Willow produced more total biomass than all other woody and herbaceous biomass crops across all locations. However, miscanthus biomass yield was similar to ‘SX67’ willow at St. Paul and Waseca, but was dependent on the cultivar of miscanthus. Prairie cordgrass cultivars were among the highest and most consistent yielding herbaceous biomass crops across locations. Miscanthus cultivars produced the highest annual dry matter yield of 35 Mg ha−1 yr−1 biomass, but only during the final year of the study. Other herbaceous crops such as switchgrass performed well in certain locations and may offer flexibility in cropping choice. This unique information on comparative biomass yield across a diversity of perennial crops will inform the overall decision-making process in a way that reduces risk and optimizes productivity in specific environments. This study shows that several biomass crop species can be successfully grown as part of a diversified biomass cropping enterprise.  相似文献   

11.
Organic acids are envisaged as alternative catalysts to strong mineral acids, in pre-treatment of ligno-cellulosic biomass for anaerobic digestion (AD). To evaluate this hypothesis, an untreated control and four pre-treatments (25 °C for 24 h) involving two levels of maleic acid (34.8 and 69.6 kg m−3), alone and combined with sulphuric acid (4 kg m−3), were studied in three agricultural substrates: Arundo (aka giant reed), Barley straw and B133 fibre sorghum. Methane production was assessed in a batch AD assay (35 °C for 51 days) with 4 g L−1 of volatile solid (VS) load. Fibre composition and structure were investigated through chemical analysis and Fourier transform infrared (FTIR) spectrometry. Arundo and B133 that were the most and least recalcitrant substrate, respectively, staged the highest and lowest increase in methane with high maleic acid: +62% over 218 cm3 g−1 of VS in untreated Arundo; +36% over 284 cm3 g−1 of VS in untreated B133. Barley straw showed an intermediate behaviour (+41% over 269 cm3 g−1 of VS). H2SO4 addition to maleic acid did not improve CH4 output. The large increase in methane yield determined by pre-treatments was reflected in the concurrent decrease of fibre (between 14 and 39% depending on fibrous component). Based on FTIR spectra, bands assigned to hemicellulose and cellulose displayed lower absorbance after pre-treatment, supporting the hypothesis of solubilisation of structural carbohydrates and change in fibre structure. Hence, maleic acid was shown a suitable catalyst to improve biodegradability of ligno-cellulosic biomass, especially in recalcitrant substrates as Arundo.  相似文献   

12.
《Biomass & bioenergy》2007,31(2-3):95-104
There is increasing international interest in developing low carbon technologies to provide hydrogen renewably. Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich substrates, and methane can be produced in a methanogenic second stage. The suitability of a range of crops for hydrogen and methane production in the UK is examined, using selection criteria including yield, harvest window and composition of the crops. The annual potential for hydrogen and methane production is calculated using the selected crops, taking into account the energy required to grow and harvest the biomass and run the process. The fermentable energy crops fodder beet, forage maize, sugar beet and rye grass were identified as the most suitable substrates for this farm-scale process. A conservative estimate of the amount of agricultural land in the UK excluding permanent grassland not already used for food production or energy crops (currently unused “set-aside” land) has been made (294,960 ha). If this was used to grow a rotation of the selected crops, 9.6 TW h net energy could be produced per year. This equates to electrical power for 2.2 million homes in the UK annually and a reduction of CO2 emissions by over 2.3 million tones per annum in the UK.  相似文献   

13.
There is a worldwide emphasis to increase the share of renewable transportation fuels. When using agricultural land for production of renewable transportation fuels, the energy output per hectare for different crops and transportation fuels is a crucial factor. In this study, the gross methane energy yield per hectare from anaerobic digestion of industrial hemp (Cannabis sativa L.), was determined at four different harvest times between July and October in Southern Sweden, a cold climate region. The biomass yield was determined for three years and the methane yield was determined for two years through the biochemical methane potential test. The highest biomass yield, 16 tonnes dry matter per hectare on an average, and the highest methane energy yield per hectare was achieved when the hemp was harvested in September or October, with an average gross methane energy yield of 136 ± 24 GJ per hectare. There was no significant difference in the specific methane yield between the harvest times; the average being 234 ± 35 m3 per tonne volatile solids. Biogas from hemp turned out to be a high yielding alternative to the currently dominating renewable transportation fuels produced from crops grown in Sweden: ethanol from wheat and biodiesel from rapeseed.  相似文献   

14.
Biogas production is mainly based on the anaerobic digestion of cereals silages and maize silage is the most utilized. Regarding biogas production, the most important portion of the plant is the ear. The corn ear, due to high starch content, is characterized by a higher biogas production compared to the silage of the whole plant.In this paper, we present the results of experimental field tests carried out in Northern Italy that aim to evaluate the anaerobic methane potential (BMP) of different portions of ensiled maize hybrids. The BMP production is evaluated considering the possibility of harvesting and ensiling: the whole plant; the plant cut at 75 cm of height; the ear only; the plant without the ear. For the different solutions, the results are reported as specific BMP and as average biogas production achievable per hectare. The methane production by harvesting and ensiling the whole plant (10,212 and 10,605 m3 ha−1, for maize class 600 and 700, respectively) is higher than the ones achievable by the other plant portions (7961 and 7707 m3 ha−1, from the ear; 9523 and 9784 m3 ha−1, from the plant cut at 75 cm; 3328 and 3554 m3 ha−1, from the plant without the ear, for maize class 600 and 700, respectively). The harvest of the whole plant, although it is the most productive solution, could not be the best solution under an economic and environmental point of view. Harvesting only the ear can be interesting considering the new Italian subsidy framework and for the biogas plants fed by biomass transported over long distances.  相似文献   

15.
Biomass from agricultural land is a key component of any sustainable bioenergy strategy, and 2nd generation, ligno-cellulosic feedstocks are part of the UK government policy to meet the target of reduced CO2 emission. Pre-harvest estimates of the biomass supply potential are usually based on experimental evidence and little is known about the yield gap between biologically obtainable and actual achievable on-farm biomass yields. We propose a systematic integration of mapped information fit for estimating obtainable yields using an empirical model, observed on-farm yields and remote sensing. Thereby, one can identify the sources of yield variation and supply uncertainty. Spatially explicit Miscanthus potential yields are compared with delivered on-farm yields from established crops ≥5 years after planting, surveyed among participants in the Energy Crop Scheme. Actual on-farm yield averaged at 8.94 Mg ha−1 and it varied greatly (coefficient of variation 34%), largely irrespective of soil type. The average yield gap on clay soils was much larger than that on sandy or loamy soils (37% vs 10%). Miscanthus is noticeably slower to establish on clay soils as shown by fitting a logistic Gompertz equation to yield time series. However, gaps in crop cover as identified by density counts, visual inspection (Google Earth) and remote sensing (Landsat-5) correlated with observed on-farm yields suggesting patchiness as causal for reduced yields. The analysis shows ways to improve the agronomy for these new crops to increase economic returns within the supply chain and the environmental benefits (reduced GHG emission, greater carbon sequestration) and reduce the land demand of bio-energy production.  相似文献   

16.
Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production.  相似文献   

17.
Prickly pear is a term used to refer to several species of cactus belonging primarily to the genus Opuntia. In general, these species present an exceptional ability to produce biomass in soil and climate conditions unfavorable for most plant species, in part due to their high water use efficiency. Given the current increase demand for renewable energy and the future prospect of more limited water resources, the potential use of prickly pear cladodes for biofuel production deserves to be investigated. The objectives of this study were to gather information on the chemical composition of prickly pear biomass from the most cultivated varieties in NE Brazil, discuss the potential of processing biomass for ethanol and biogas production and to point out gaps in know-how and priorities for research on this topic. We quantified in the tree varieties studied significant amounts of uronic acids (10.7%) and oxalic acid (10.3%), confirming the reports of high amounts of pectin and calcium oxalate in cladodes of prickly pear. The estimated potential of ethanol production for prickly pear (1490–1875 L ha−1 yr−1) was low when compared to traditional biomass sources (sugarcane and sugar beet, for example). However, it appears that prickly pear stands out as a biomass with potential for high production rates of methane (3717 m3 ha−1 yr−1), being comparable to traditional energy crops. Further studies are needed to assess more consistently both the sustainability of biomass production as the potential for ethanol, and biogas production, specially for newly released varieties of prickly pear.  相似文献   

18.
Arundo donax L. is a perennial plant that can substitute for traditional energy crops to produce biogas, reducing costs because of its high biogas yield per Ha cultivated and low agronomic and energetic inputs. Nevertheless, Arundo donax biomass needs to be ensiled to be preserved and used. Because no full-scale data exist about A. donax ensilage and the effect of this process on potential biogas production, in this work two different ensiling techniques, i.e. trench and silo-bag ensiling, were performed at full scale, and the processes studied for 200 days. Results obtained indicated that A. donax could be successful ensiled by using the two approaches. Ensilage proceeded by fermentation of organic acids already present in the biomass, i.e. malic and oxalic acids that were degraded, giving volatile fatty acid accumulation. This was different from corn ensiling characterized by starch fermentation to lactic acids. Biological processes determined a loss of the potential biomethane production, namely −20.1% and −7.6% for trench and silo-bag, respectively. Taking into consideration biomethane yield per Ha and ensilage losses, potential biomethane losses of 5000 Nm3 CH4 Ha−1 for trench silage and of 2000 Nm3 CH4 Ha−1 for silo bag, were estimated, respectively. Nevertheless, taking into consideration the higher biomass and biomethane yields Ha−1 in comparison with the other energy crops, A. donax still remained more efficient and cheaper than traditional energy crops in producing biogas.  相似文献   

19.
Three annual plant species, maize, hemp and faba bean were tested for suitability as dedicated biomass crops in Boreal conditions. Biomass yields were 10-15 t ha-1. The crops were analyzed for their composition and tested as raw materials for conversion to methane and to fermentable sugars. The methane yield was 379 ± 16 Ndm3 kg−1 VS−1 from maize, 387 ± 20 Ndm3 kg−1 VS−1 from faba bean and 239 ± 9 Ndm3 kg−1 VS−1 from hemp. Based on the yield per hectare, maize proved to be the most potential raw material source for methane production. Analogous to methane production, maize was the most productive raw material also in standard hydrolysis tests, with a conversion yield of about 80% of the theoretical sugars. Based on the amount of carbohydrates, the highest theoretical yield per hectare was obtained with hemp. However, considering all parameters, including the need for weeding and fertilizers, all three crops studied proved to be attractive options for cultivation in boreal conditions as well as being used as energy crops in boreal climate.  相似文献   

20.
A process model was developed to determine the net energy ratio (NER) for the production of pellets from steam pretreated agricultural residue (wheat straw) and energy crops (i.e., switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated wheat straw and switchgrass pellets. The NERs for the base case at 6 kg h−1 are 1.76 and 1.37 for steam-pretreated wheat straw and switchgrass-based pellets, respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than wheat straw pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 °C with 50% pretreatment (i.e. 50 % steam treated material is blended with the raw biomass and then pelletised). The uncertainty results for NER for steam pretreated wheat straw and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号