首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The production of biogas through anaerobic digestion is one of the technological solutions to convert biomass into a readily usable fuel. Biogas can replace natural gas, if the biogas is upgraded to green gas. To contribute to the EU-target to reduce Green House Gases emissions, the installed biogas production capacity and the amount of farm-based biomass, as a feedstock, has to be increased. A model was developed to describe a green gas production chain that consists of several digesters connected by a biogas grid to an upgrading and injection facility. The model calculates costs and energy use for 1 m3 of green gas. The number of digesters in the chain can be varied to find results for different configurations. Results are presented for a chain with decentralized production of biogas, i.e. a configuration with several digesters, and a centralized green gas production chain using a single digester. The model showed that no energy advantage per produced m3 green gas can be created using a biogas grid and decentralized digesters instead of one large-scale digester. Production costs using a centralized digester are lower, in the range of 5 €ct to 13 €ct per m3, than in a configuration of decentralized digesters. The model calculations also showed the financial benefit for an operator of a small-scale digester wishing to produce green gas in the cooperation with nearby other producers. E.g. subsidies and legislation based on environmental arguments could encourage the use of decentralized digesters in a biogas grid.  相似文献   

2.
A biomass energy utilization project (Corn stalk→Cattle→Cattle dung→Biogas digester→Biogas/Digester residues→Soil) was conducted in a typical temperate agro-village of China from 2005 to 2010. The present study focused on two key approaches of the ecological loop: (1) increasing corn stalk use efficiency by improving anaerobic fermentation technology; and (2) enhancing biogas productivity by optimizing fermentation conditions. Our results showed that crude protein and fat of corn stalks significantly increased, while crude fiber content and pH decreased considerably during anaerobic fermentation. The cattle digestion rate, forage consumption and increases in cattle weight were higher in cattle fed fermented corn stalks than in those fed non-fermented corn stalks. The rate of biogas production was higher (78.4%) by using cattle dung as a substrate than using crop residues. Heat preservation measures effectively enhanced the biogas production rate (12.3%). In 2005, only two cattle were fed in this village, with only 1.1% corn stalk utilized as forage. No more than three biogas digesters existed, and the proportion of biogas energy used in total household fuel was only 1.7%. At the end of the 5-year experiment, the number of cattle capita reached 169 with 78.9% corn stalk used as forage. Biogas digesters increased to 130, and the proportion of biogas energy used in total household fuel was up to 42.3%. A significant positive correlation was noted between the increasing rate of farmers’ incomes and the proportion of corn stalks used as forage. Available nutrients were higher in fermented cattle dung than in fresh cattle dung. Our findings clearly suggest that anaerobic fermentation technology is important in enhancing crop residue use efficiency, biogas productivity and soil fertility. Fermentation technology may help reduce the use of fossil fuels and improve the environment in rural areas.  相似文献   

3.
4m3商品化户用玻璃钢沼气池的实际运行效果   总被引:3,自引:1,他引:3  
在云南省已试验示范和推广了4m^3商品化户用玻璃钢沼气池1000多口,基本上能够解决5口之家的日常生活用能,使用管理方便,深受农户欢迎。实际运行的统计分析表明,平均年产沼气600m^3以上,原料产气率为0.377m^3/kg,沼气的甲烷含量超过65%。  相似文献   

4.
During biogas production from various types of substrates such as animal manure, fats and proteins, bacterial growth and biogas production can be inhibited by excessive ammonia (NH3) concentrations. If NH3 is removed from the biogas digester without damaging the digestion process, inhibition of the methane (CH4) producing bacteria will diminish. This study shows that it is possible to remove a significant quantity of NH3 from the biogas digester headspace and liquid phase by a simple gas circulation method where gas bubbles free of NH3 is forced through the upper 30 cm of the liquid phase in the biogas digester, into the headspace and out of the digester. The suggested method improves conditions for anaerobic bacteria exposed to high concentrations of NH3 by simply removing NH3 from the digester.In full-scale biogas production the system presented in this study can be improved by circulating headspace gas through an ammonia absorber and returning the NH3 depleted biogas into the biogas digester. This method can also replace the need for mixing in biogas digesters.  相似文献   

5.
Fuel cells, mostly phosphoric acid, have been shown to operate well on renewable biogas fuels, such as anaerobic digester gas (ADC) produced at wastewater treatment plants as well as landfill gas (LFG) and gas produced in beer breweries. This paper discusses an innovative emission-offset project that utilizes anaerobic digester gas-powered fuel cells to produce electricity in New York. The use of fuel cells at wastewater treatment plants is also discussed.  相似文献   

6.
The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 °C-150 °C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25–100 °C). Maximum enhancement is observed at 70 °C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50–10 °C), with maximum enhancement at 100 °C having 28% biogas and 25% methane increase.  相似文献   

7.
The production of biogas is of growing interest as fossil-fuel reserves decline. However, there exists a dearth of literature on the design considerations that would lead to process optimization in the development of anaerobic digesters aimed at creating useful commodities from the ever-abundant municipal solid-waste. Consequently, this paper provides a synthesis of the key issues and analyses concerning the design of a high-performance anaerobic digester.  相似文献   

8.
为了有效解决陕西省农村户用沼气池使用时间短的难题,结合陕西农村的实际情况,对传统沼气池的结构形式进行了改进,增加预处理池为沼气池提供热量,并对沼气池的池墙、进(出)料口进行保温,以达到增加冬季沼气池池温的目的。以榆林市为代表,通过理论计算、试验等手段,证明冬季最低室外温度条件下,沼气池产气率可以达到0.1 m3/(m3.d)以上,一口6~8 m3的沼气池就可以满足一个普通农户一天的炊事用气要求。  相似文献   

9.
The effect of waste paper on biogas yield produced by co-digesting fixed amount of cow dung and water hyacinth in five digesters A-E was studied at room temperature. Waste paper was observed to improve biogas yield in digesters B-E with digester A acting as the control. However, as the amount of waste paper increased the biogas yield was observed to decrease. Kinetic model based on first order kinetic was derived to estimate the maximum, ultimate, biogas yield and also the ultimate methane yield from these biomass mixtures. The maximum biogas yield estimated using this model for digesters B-E were 0.282, 0.262, 0.233, and 0.217 lg−1 VS fed with goodness of fit (R2) of 0.995, 0.99, 0.889, and 0.925 respectively, which were obtained by fitting the experimental biogas yield (yt) against (exp(kt)−1)/exp(kt). The ultimate biogas and methane yield at very low batch solid load were extrapolated to be 0.34 and 0.204 lg−1 VS fed respectively. In essence, the addition of waste paper in the co-digestion of cow dung and water hyacinth can be a feasible means of improving biogas yield and also alternative means of recycling waste paper. Furthermore, the kinetic model developed can compliment other models used in anaerobic digestion of agricultural and solid waste.  相似文献   

10.
Biogas is a promising renewable fuel, which can be produced from a variety of organic raw materials and used for various energetic purposes, such as heat, combined heat and power or as a vehicle fuel. Biogas systems implementation are, therefore, subjected to several support measures but also to several constraints, related with policy measures on energy, waste treatment and agriculture. In this work, different policies and policy instruments, as well as other factors, which influence a potential expansion of Portuguese biogas systems are identified and evaluated. The result of this analysis shows that the use of the cattle manure for biogas production is still far from its potential. The main reason is the reduced dimension of the Portuguese farms, which makes biogas production unfeasible. Various options are suggested to increase or improve biogas production such as co-digestion, centralized plants and modular plants. Horizontal digesters are the most suitable for the typical Portuguese plant size and have the advantage of being also suitable for co-digestion due to the very good mixing conditions. Mesophilic anaerobic digestion due to a more robustness, stability and lower energy consumption should be the choice. The recent increase in the feed-in tariffs for the electricity production based on anaerobic digestion biogas is seen as a political push to this sector.  相似文献   

11.
推导了低热值燃气-柴油双燃料发动机动力性能计算公式,并对由单缸、四冲程、水冷、直喷式柴油机改装的生物制气-柴油双燃料发动机的动力性能进行了计算分析。结果表明:双燃料发动机能够达到原柴油机的动力水平;其动力性能随引燃油量的减小而降低;在新鲜空气充足的前提下,供给更多的燃气,双燃料发动机的动力性能增强;燃气替代率有一最大值,超过该值后,随替代率增大,动力性能急剧下降;燃气低热值越高,替代率便可越大。计算得出的生物制气-柴油双燃料发动机在标定点和最大转矩点的最大生物制气替代率和对应的燃气进气比,与试验结果相吻合。  相似文献   

12.
解决牛粪厌氧发酵中浮渣结壳的几种方法   总被引:4,自引:0,他引:4  
在畜禽养殖场沼气发电工程中,牛粪具有固体及纤维物质含量高的特点.在厌氧发酵过程中极易在厌氧反应器内部形成浮渣层并硬化结壳,如不及时解决,将导致沼气无法顺利进入气室,严重影响厌氧反应器的正常运行.针对这个问题,文章介绍几种在实际工程中经常用到的防止浮渣结壳的方法(高位出料、机械搅拌、反冲回流等),供工程设计人员参考.  相似文献   

13.
In this work, an experimental investigation has been carried out to reduce the emission and improve the performance and combustion characteristics of direct injection compression ignition (DICI) engine fuelled with diesel and biogas in dual fuel mode. The anaerobic digestion method was used to produce biogas from tamarind seed and rice bran (TSRB). The diesel is injected by conventional injector setup and the biogas is inducted through the intake manifold with air in different flow rates such as 0.25, 0.50, 0.75, and 1.0 kg/hr. The emission, combustion, and performance test is conducted with a different flow rate of biogas with diesel and compared with diesel. Results show that the smoke and Nox emissions are lowered by 7.1and 23.27%, respectively compared to diesel mode.  相似文献   

14.
The availability of trace metals as micro-nutrients plays a very significant role on the performance and stability of agricultural biogas digesters, which are operated with energy crops, animal excreta, crop residues, organic fraction of municipal solid wastes or any other type of organic waste. The unavailability of these elements in biogas digesters is probably the first reason of poor process efficiency without any other obvious reason, despite proper management and control of other operational and environmental parameters. However, trace metal requirements of biogas digesters operated with solid biomass are not often reported in literature. Therefore, the aim of this article is to review the previous and current literature about the trace metal requirements of anaerobic biogas digesters operated with solid organic substrates for production of methane.  相似文献   

15.
The Biofuels Directive places an onus on EU member states to ensure that biofuels are placed on their markets. This paper investigates the use of CH4-enriched biogas as a fuel. A number of options, which produce CH4-enriched biogas, were analysed from technical, economic and environmental perspectives. Biogas may be produced at a centralised anaerobic digestion (CAD) facility, accepting agricultural slurries plus a portion (typically 20%) of municipal waste such as the organic fraction of municipal solid waste (OFMSW). Alternatively, OFMSW may be the sole feedstock utilised in the dry anaerobic combustion (DRANCO) process. Importation of green electricity to satisfy parasitic electrical demand and the burning of biogas to satisfy thermal demand was found to be more advantageous than using biogas in a combined heat and power (CHP) plant to cover parasitic electrical and thermal demand. The DRANCO process produced more fuel than the CAD process due to the lower thermal demand of the digester. The economics of the DRANCO process were superior to the CAD process due to the greater gate fee (it is assumed that no gate fee is obtained from agricultural slurry) and the greater quantity of biogas available for sale. The DRANCO process leads to greater greenhouse-gas savings than the CAD process due to the displacement of more OFMSW from landfill and more petrol from transport. The options when applied to Ireland could lead to a substitution of 1% of petrol and diesel and to a 12% reduction in greenhouse-gas emissions from the transport sector.  相似文献   

16.
This work investigates the behaviour of planar solid oxide fuel cells (SOFCs) fed by two different fuel mixtures that simulate biogases coming from anaerobic digestion. The fuel mixtures are namely bio-methane and bio-hydrogen. The first composition is the conventional one, where a biological process of fermentation is carried out to produce a gas that contains a mixture of methane and carbon dioxide with traces of H2S and other organic sulphur compounds. The second mixture is representative of a biogas produced through a novel routine: a particular pre-treatment of the bacteria inoculum (generally clostridia bacteria) is performed in order to inhibit the methanogenic step in the fermentation process, such that bio-hydrogen is produced as the only effluent of the digester (a mixture of H2/CO2, with no traces of methane).  相似文献   

17.
This work presents the strategies applied to improve the performance of a spark ignition (SI) biogas engine. A diesel engine with a high compression ratio (CR) was converted to SI to be fueled with gaseous fuels. Biogas was used as the main fuel to increase knocking resistance of the blends. Biogas was blended with natural gas, propane, and hydrogen to improve fuel combustion properties. The spark timing (ST) was adjusted for optimum generating efficiencies close to the knocking threshold. The engine was operated on each blend at the maximum output power under stable combustion conditions. The maximum output power was measured at partial throttle limited by engine knocking threshold. The use of biogas in the engine resulted in a power derating of 6.25% compared with the original diesel engine (8 kW @ 1800 rpm). 50% biogas + 50% natural gas was the blend with the highest output power (8.66 kW @1800 rpm) and the highest generating efficiency (29.8%); this blend indeed got better results than the blends enriched with propane and hydrogen. Tests conditions were selected to achieve an average knocking peak pressure between 0.3 and 0.5 bar and COV of IMEP lower than 4% using 200 consecutive cycles as reference. With the blends of biogas, propane, and hydrogen, the output power obtained was just over 8 kW whereas the blends of biogas, natural gas, and hydrogen the output power were close to 8.6 kW. Moreover, a new approach to evaluate the maximum output power in gas engines is proposed, which does not depend on the engine % throttle but on the limit defined by the knocking threshold and cyclic variations.  相似文献   

18.
Limitations on the upgradation of biogas to biomethane in terms of cost effectiveness and technology maturity levels for stationary power generation purpose in rural applications have redirected the research focus towards possibilities for enhancement of biogas fuel quality by blending with superior quality fuels. In this work, the effect of hydrogen enrichment on performance, combustion and emission characteristics of a single-cylinder, four-stroke, water-cooled, biogas fuelled spark-ignition engine operated at the compression ratio of 10:1 and 1500 rpm has been evaluated using experimental and computational (CFD) studies. The percentage share of hydrogen in the inducted biogas fuel mixture was increased from 0 to 30%, and engine characteristics with pure methane fuel was considered as a baseline for comparative analysis. The CFD model is developed in Converge CFD software for a better understanding on combustion phenomenon and is validated with experimental data. In addition, the percentage share of hydrogen enrichment which would serve as a compromise between biogas upgradation cost and engine characteristics is also identified. The results of study indicated an enhancement in combustion characteristics (peak in-cylinder pressure increased; COVIMEP reduced from 9.87% to 1.66%; flame initiation and combustion durations reduced) and emission characteristics (hydrocarbon emissions reduced, and NOx emissions increased but still lower than pure methane) with increase in hydrogen share from 0 to 30% in biogas fuelled SI engine. Flame propagation speed increased and combustion duration reduced with hydrogen supplementation and the same was evident from the results of the CFD model. Performance of the engine increased with increase in hydrogen share up to 20% and further increment in hydrogen share degraded the performance, owing to heat losses and the enhancement in combustion characteristics were relatively small. Overall, it was found that 20% blending of hydrogen in the inducted biogas fuel mixture will be effective in enhancing the engine characteristics of biogas fuelled engines for stationary power generation applications and it holds a good compromise between biogas upgradation cost and engine performance.  相似文献   

19.
A novel solid oxide fuel cell (SOFC) multigeneration system fueled by biogas derived from agricultural waste (maize silage) is designed and analyzed from the view point of energy and exergy analysis. The system is proposed in order to limit the greenhouse gas emissions as it uses a renewable energy source as a fuel. Electricity, domestic hot water, hydrogen and cooling load are produced simultaneously by the system. The system includes a solid oxide fuel cell; which is the primary mover, a biogas digester subsystem, a cascaded closed loop organic Rankine cycle, a single effect LiBr-water absorption refrigeration cycle, and a proton exchange membrane electrolyzer subsystem. The proposed cascaded closed-loop ORC cycle is considered as one of the advanced heat recovery technologies that significantly improve thermal efficiency of integrated systems. The thermal performance of the proposed system is observed to be higher in comparison to the simple ORC and the recuperated ORC cycles. The integration of a splitter to govern the flue gas separation ratio is also introduced in this study to cater for particular needs/demands. The separation ratio can be used to vary the cooling load or the additional power supplied by the ORC to the system. It is deduced that net electrical power, cooling load, heating capacity of the domestic hot water and total energy and exergy efficiency are 789.7 kW, 317.3 kW, 65.75 kW, 69.86% and 47.4% respectively under integral design conditions. Using a parametric approach, the effects of main parameters on the output of the device are analyzed. Current density is an important parameter for system performance. Increasing the current density leads to increased power produced by the system, decreased exergy efficiency in the system and increased energy efficiency. After-burner, air and fuel heat exchangers are observed to have the highest exergy destruction rates. Lower current density values are desirable for better exergy-based sustainability from the exergetic environmental impact assessment. Higher current density values have negative effect on the environment.  相似文献   

20.
Biogas production is mainly based on the anaerobic digestion of cereals silages and maize silage is the most utilized. Regarding biogas production, the most important portion of the plant is the ear. The corn ear, due to high starch content, is characterized by a higher biogas production compared to the silage of the whole plant.In this paper, we present the results of experimental field tests carried out in Northern Italy that aim to evaluate the anaerobic methane potential (BMP) of different portions of ensiled maize hybrids. The BMP production is evaluated considering the possibility of harvesting and ensiling: the whole plant; the plant cut at 75 cm of height; the ear only; the plant without the ear. For the different solutions, the results are reported as specific BMP and as average biogas production achievable per hectare. The methane production by harvesting and ensiling the whole plant (10,212 and 10,605 m3 ha−1, for maize class 600 and 700, respectively) is higher than the ones achievable by the other plant portions (7961 and 7707 m3 ha−1, from the ear; 9523 and 9784 m3 ha−1, from the plant cut at 75 cm; 3328 and 3554 m3 ha−1, from the plant without the ear, for maize class 600 and 700, respectively). The harvest of the whole plant, although it is the most productive solution, could not be the best solution under an economic and environmental point of view. Harvesting only the ear can be interesting considering the new Italian subsidy framework and for the biogas plants fed by biomass transported over long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号