首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of drying conditions on the drying behavior of sweet potato (Ipomoea batatas L.) were investigated in a cabinet dryer. The convective air drying was carried out under five air temperatures; 50, 60, 70, 80 and 90 °C, five air velocities of 1.5, 2.5, 3.5, 4.5 and 5.5 m/s and three sweet potato cubes of 5, 8 and 12 mm thickness. Data were analyzed to obtain diffusivity values from the period of falling drying rate. Results indicated that drying took place in the falling rate period. Moisture transfer from sweet potato cubes was described by applying the Fick's diffusion model, and effective moisture diffusion coefficients were calculated. Effective diffusivity increased with increasing temperature. An Arrhenius relation with an activation energy value of 11.38 kJ/mol expressed effect of temperature on the diffusivity. Two mathematical models available in the literature were fitted to the experimental data. The page model gave better prediction than the first order kinetics of Henderson and Pabis model and satisfactorily described drying characteristics of sweet potato cubes.  相似文献   

2.
The drying operation is one of the critical steps in the preparation of instant rice. Drying methods and conditions play important roles in achieving the desired quality. In this study, instant rice was subjected to convective hot air, microwave and combined microwave-hot air dehydration. Three air temperature (70 °C, 80 °C, 90 °C) and three microwave power (210 W, 300 W, 560 W) settings were investigated to find the drying kinetics, rehydration kinetics and colour change. The results showed that combined microwave-hot air drying decreased the drying time required when compared to drying with either hot air or microwave energy alone. Predictive models were developed to describe dehydration and rehydration kinetics. Dehydration rate, rehydration rate and total colour change of rehydrated product generally increased with microwave level and air temperature. Combination drying with MW = 300 W and T = 80 °C was optimal in terms of drying time, rehydration time and colour.  相似文献   

3.
Pineapple (Anana comosus) slices were dried by hot-air convective drying technique at fixed temperature (45, 60 and 75 °C) and constant air velocity of 1.5 m/s. The effect of drying conditions (drying time and air temperature) on the pineapple quality was evaluated. The quality of dehydrated pineapple was analyzed by color and texture changes, l-ascorbic acid loss and the ability of water uptake during rehydration procedure. Water uptake during rehydration was described by Page model. Statistical analysis of data revealed not significant difference (p > 0.05) among color and mechanical characteristics of pineapple samples dried at different drying temperatures to preset moisture content. Pineapple samples dried at 45 °C had better rehydration ability and more l-ascorbic acid retention than those obtained by air drying 75 °C. Hence, 45 °C drying temperature was best condition for pineapple quality preservation.  相似文献   

4.
Thin layer solar drying experiments of silkworm pupae using a solar tunnel dryer were conducted under the tropical weather conditions of Mahasarakham, Thailand. The dryer consisted of a transparent glass covered flat-plate collector and a drying tunnel connected in series to supply hot air directly into the drying tunnel using a blower. During the experiments, silkworm pupae were dried to the final moisture content of 0.15 kg water kg?1 dry matter from 4.37 kg water kg?1 dry matter in 373 min at the corresponding air flow rate of 0.32 kg s?1. Ten different thin layer drying models were compared according to their coefficient of determination to estimate drying curves. The Midilli–Kucuk model precisely represents the solar tunnel drying behavior with the coefficient of determination (R2) of 0.9982. The maximum drying rate and effective moisture diffusivity were 0.6723 kg water kg?1 dry matter h?1 and 2.7696 × 10?10 m2 s?1, respectively, on the drying air flow rate of 0.32 kg s?1. A quality assessment shows that the lipid content of the dried silkworm pupae was not affected by the solar tunnel dryer. A slight decrease of polyunsaturated fatty acid (PUFA) was observed.  相似文献   

5.
The literature surveyed revealed that the drying kinetics of Gundelia tournefortii has not been investigated. In this study, mathematical modeling of the thin layer drying kinetics of G. tournefortii is investigated for both the microwave and open sun drying conditions. Five different microwave power levels ranging from 90 to 800 W were used for the microwave drying. Solar radiation for the open sun drying varied from 350 to 1100 W/m2. Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in drying time. The experimental moisture loss data were fitted to the 14 thin layer drying models. Among the models proposed, the Midilli model precisely represented the microwave drying behavior of G. tournefortii with the coefficient of determination higher than 0.996 and mean square of deviation (χ2), root mean square error (RMSE) and mean bias error (MBE) lower than 1.82 × 10?4, 12 × 10?3 and 1.4 × 10?4, respectively for all the microwave drying conditions studied. Values of drying constant (k) were in the range of 0.0098–0.2943 min?1 and the effective moisture diffusivities (Deff) of G. tournefortii ranged from 5.5 × 10?8 to 3.5 × 10?7 m2/s. The values of k and Deff increased with the increase of microwave power level. The logarithmic model was found to best describe the open sun drying kinetics of G. tournefortii. The effective diffusivity of G. tournefortii under the sun drying condition was determined as 2.48 × 10?10 m2/s.  相似文献   

6.
The main objective of this study is to evaluate the effects of solar-assisted spouted bed and open sun drying on the drying rate and quality parameters of pea. Color, shrinkage, bulk and apparent densities, internal and bulk porosities, rehydration capacity and microstructure were the quality parameters investigated in dried product.Drying rate for solar-assisted spouted bed was about 3.5 times of drying rate for open sun drying. Air temperature changed between 20 °C and 27.4 °C during open sun drying while temperature of air at the inlet of solar-assisted spouted bed dryer varied between 35.3 °C and 65.5 °C during the experiments. Effective diffusivities were found to be 0.64 × 10?10 and 3.27 × 10?10 m2/s for open sun and solar-assisted spouted bed drying of pea, respectively. In color analysis, it was observed that a* value increased while b* value decreased for both drying methods. Bulk density and apparent density of peas dried under open sun was higher than that in solar-assisted spouted bed drier. In both drying methods, internal and bulk porosities decreased. Shrinkage was more for open sun dried samples. Rehydration capacity for solar-assisted spouted bed dried sample was higher than the one for open sun dried.  相似文献   

7.
A ring shape is commonly used for industrial process of pineapple. Unfortunately, there has been no study on modeling of pineapple rings. Therefore we developed the mathematical model of pineapple rings during combined far-infrared radiation and air convection drying to investigate the evolutions of moisture content and qualities. The drying model based on the solution of Fick's law was used to estimate moisture diffusion coefficient (D). The D values with and without taking into account shrinkage phenomenon of dried products were compared. The kinetics of dried pineapple qualities such as color, shear force ratio and shrinkage during drying also were studied. Pineapples were pretreated, cut into rings and dried at far-infrared intensities of 1–5 kW/m2 combined with air temperatures of 40–60 °C and air velocities of 0.5–1.5 m/s. The D values were found to increase with increasing intensity and air temperature. The D values with shrinkage consideration were lower than the D values without shrinkage consideration for all drying conditions. The quartic model gave a better fit over the other three polynomial models for describing the color kinetics. The thin layer drying models such as Page, Henderson and Pabis, Logarithmic and Midilli–Kucuk were modified in order to describe shear force ratio (SFR) of dried pineapple. The statistically analyses from this present study indicated that modification of drying models can be used to describe the kinetics of SFR and Midilli–Kucuk's form gave a better fit over the other form. The quadratic model was better than the linear model to predict shrinkage kinetics for all four dimensions (outer radius, inner radius, thickness and volume) of pineapple rings.  相似文献   

8.
The effect of the application of a pre-osmotic treatment to obtain hot air dried cocona (Solanum sessiliofurum Dunal) chips was studied. The drying kinetics and the optical and mechanical properties of cocona chips obtained by the combined method of osmotic dehydration and hot air drying (OD + HAD) and by only hot air drying (HAD) were compared. Samples were dried by hot air at 60 °C. For the combined method, they were pre-dried to a moisture content of 75 gwater/100 g, immersed in a 55 °Brix sucrose solution at 25 °C for 48 min. The pre-osmodehydration applied did not influence the subsequent hot air drying kinetics, resulting in a final product with 0.055 ± 0.005 gwater/gcocona. The optical properties of OD + HAD chips were more favorable, exhibiting a smaller color change with respect to the fresh fruit (±15 units) than the HAD samples (±23 units). On the other hand, the OD + HAD chips presented more fracture peaks than HAD ones, this related with a structure with a higher degree of crispness, a very desirable property for a chip product.  相似文献   

9.
In this study, drying kinetics of kiwifruit are investigated experimentally and theoretically under varying drying conditions. Experiments are conducted using air temperatures at 35, 45, 55 and 65 °C, mean velocities at 0.3, 0.6 and 0.9 m s?1 and, relative humidity values at 40%, 55%, 70% and 85%. Initially, sorption isotherms of the dried kiwifruit slices are determined for different temperatures and equilibrium relative humidity values. The values of the moisture diffusivity, Deff are obtained from the Fick's diffusion model. The effects of the governing drying parameters on the vitamin C content as well as on the total drying time are determined. The experimental moisture data were fitted to some models available in the literature, mainly the Henderson and Pabis model, the Lewis model and the two-term exponential model and, a good agreement was observed. In addition, it is disclosed that increasing drying air temperature causes more loss in vitamin C in the dried fruits while degradation of vitamin C is reduced with increasing relative humidity of drying air.  相似文献   

10.
The present work aimed, on one hand, to study of the drying of onions in terms of drying kinetics, which was evaluated at 30 °C, 50 °C and 60 °C. The experimental data was fitted to different empirical kinetic models from the literature, and this kinetic study was then complemented with the modelling if terms of Fick's diffusion equation, for estimation of the diffusion coefficients. On the other hand, the chemical characterization in fresh and dried onions at different temperatures (varying from 30 °C to 70 °C) was analysed, to evaluate the effect of drying and drying temperature on the chemical composition of the product. In this way, the analyses of moisture content, sugar content, crude protein, ash, fat, crude fibre, acidity and vitamin C were made and reported in this paper.From the results obtained it was verified that some chemical components of the onions are not affected by drying (ash, fat, protein and fibre) whereas some others are considerably influenced by drying (sugars, acidity and vitamin C). The present work allowed concluding that the three empirical models tested (Newton, Modified Page and Logarithmic) all describe relatively well the dehydration kinetics at the three temperatures analysed. Moreover, from the experimental data it was possible to estimate the diffusivities, which range between 3.33 × 10?09 m2/s at 30 °C and 8.55 × 10?09 m2/s at 60 °C.  相似文献   

11.
The effect of spouted bed and microwave-assisted spouted bed drying on drying rates of parboiled wheat was investigated. In addition, the effective moisture diffusivities of parboiled wheat were calculated. The drying experiments were performed using 200 g of parboiled wheat, at three different air temperatures (50, 70, 90 °C) and at two different microwave powers (3.5 W/g (db), 7.5 W/g (db)). Microwave-assisted spouted bed drying at microwave power of 3.5 W/g and 7.5 W/g reduced drying time by at least 60% and 85%, respectively compared to spouted bed drying. The effective diffusivity values were in the range of 1.44 × 10?10–3.32 × 10?10 in spouted bed drying while they were between 5.06 × 10?10 and 11.3 × 10?10 in microwave-assisted spouted bed drying at different experimental conditions.  相似文献   

12.
Drying characteristics of the Shiitake mushroom and Jinda chili, a commonly grown variety in the Northeast of Thailand, was investigated under varying conditions of the drying temperatures (50, 55, 60 and 65 °C) and the vacuum pressures (0.1, 0.2, 0.3 and 0.4 bar) in a new design of a vacuum heat pump dryer. Nine different thin layer mathematical drying models were compared according to their correlation coefficient, reduced chi-square and root mean square error to estimate vacuum heat pump drying curves. The result indicates that the Midilli model can present better predictions than the others. The constants and coefficients of this model could be explained by the effect of the drying temperature and the drying pressure. The drying temperature and pressure significantly affects color degradation (probability P < 0.05). Drying temperature has little effects on rehydration capacity (probability P > 0.05). Rehydration capacity notably decreases with an increase in the vacuum pressure.  相似文献   

13.
Aloe vera (Aloe barbadensis Miller) gel was dried at five inlet temperatures 50, 60, 70, 80 and 90 °C, in a convective dryer with a constant air flow of 2.0 ± 0.2 m/s. Rehydration ratio, water holding capacity, texture, microstructure and total polysaccharide content were evaluated. Drying kinetics was estimated using the Weibull distribution (r2 > 0.97 and Chi-square < 0.0009). Values of scale and shape parameters ranged from 90.94 to 341.06 (min) and 1.43 to 1.49, respectively. Furthermore, the influence of temperature on the model parameters as well as on the quality attributes was analysed using a least significant difference test (p-value < 0.05). These effects were more evident for the long drying period (e.g. 810 min at 50 °C). However, minor alterations in the structural properties and total polysaccharide content were produced at drying temperatures of 60–70 °C, resulting in a high quality gel.  相似文献   

14.
The overall aim of this study was to assess the moisture loss kinetics and the structural changes induced by both conventional and ultrasonically assisted convective drying of eggplant tissue. Three sets of drying experiments (at 40 °C and 1 m/s) were carried out: conventional air drying and ultrasonically assisted drying at two different levels of applied ultrasonic power, 45 and 90 W. The microstructure of the dried samples was studied by scanning electron microscopy.The application of ultrasound during the convective drying of eggplant led to a significant reduction of the drying time. The ultrasonic effect was dependent on the power applied, thus, the higher the power, the faster the moisture loss. The microstructure of eggplant endocarp was greatly affected during conventional air drying, probably due to the long drying times. This microstructure was better preserved after the application of a moderate ultrasonic power (45 W), due to the shorter drying time and the mild mechanical effects of ultrasound on the endocarp cells.  相似文献   

15.
Sumac (Rhus coriaria L.) is a spice which is obtained by grinding of whole sumac berries. The aim of this study is to survey the feasibility of a spray dried sumac extract process along with the effects of adding maltodextrin (MD) and the effects of the inlet and outlet temperatures of the drying air on the properties of the powdered product obtained from the spray drying of the sumac extract. A pilot scale spray dryer was used for the production of the sumac extract powder. The inlet/outlet air temperatures were adjusted to 160/80, 180/90, and 200/100 °C where outlet air temperature was controlled by regulating the feed flow rate. The total soluble solid content of the sumac extract was measured as 3.5% and adjusted to 10, 15, 20, and 25% (w/w) with the addition of maltodextrin with a Dextrose Equivalence (DE) of 10–12. The obtained powders were analyzed for moisture content, water activity, ash content, pH, colour, total phenolic content, antioxidant activity, bulk density, wettability, solubility, and microstructure.Depending on the analysis of the results, the temperature, maltodextrin, and the interaction between temperature and maltodextrin have an important effect on the performed analysis (P < 0.05) except for the pH value analysis (P > 0.05).  相似文献   

16.
Combination of osmotic dehydration with microwave assisted air drying offers increased flexibility for process control and product quality. Osmotic dehydration (55°Brix solution at 40 °C for 90 min) combined with microwave assisted air drying (MWAD) was tested on smooth cayenne pineapples. The influence of the four most relevant processing parameters (osmotic treatment time, microwave power, air temperature and air velocity) was studied using a 24 circumscribed central composite experimental design. The product quality was evaluated in terms of charred appearance at the surface, moisture content, soluble solids content, water activity, firmness, colour and volume. Microwave power and air temperature were the two most important processing parameters that influenced the quality of the dehydrated pineapple, with the parameters most affected by the operating conditions being water content and percentage of charred pieces. Only in the latter was a significant quadratic effect found, all others were approximately linear. There was also a significant interactive effect between microwave power and air temperature affecting the percentage of charred pieces. Model predictions using a quadratic surface for water content and % charred pieces were validated with an additional experiment. Quadratic models were used to indicate optimum drying conditions for various targets.  相似文献   

17.
The objective of this study was to develop a drying equation for predicting the thin layer drying kinetics of dried Thai Hom Mali paddy using different drying gases. Thai Hom Mali paddy cv. Khao Dok Mali 105 with initial moisture content of 32% dry basis was dried in a heat pump dryer at 0.4 m/s fixed superficial velocity, 60% fixed evaporator bypass air ratio, and varied drying temperatures of 40, 50, 60 and 70 °C using hot air, CO2 and N2 gases as drying media. Drying rate was not affected by drying gases but increased with drying temperatures. Moisture ratios, at any given time during the drying process, were compared among various models, namely, Newton, Page, Modified Page I, Henderson and Pabis, two-term, approximation of diffusion, and Midilli. The effect of drying air temperatures on the coefficients of the best moisture ratio model was determined by single step regression method. The R2 coefficient, root mean square error (RMSE) and chi-square (χ2) were criteria for selecting the best model. The study found that the Midilli model was the best model for describing the drying behavior of Thai Hom Mali paddy in every evaluated drying gas. It should be possible to predict the moisture content of a product with a generalized model that shows the effect of drying air temperature on the model constants and coefficients.  相似文献   

18.
Power ultrasound application could constitute a way to enhance food drying in order to improve not only mass transfer but also product quality, since it does not significantly heat the material. The main aim of this work was to assess the influence of power ultrasound on the mass transfer process during drying of different products, carrot, persimmon and lemon peel.Convective drying kinetics were carried out with ultrasound (US experiments 21.8 kHz, 75 W), or without ultrasound application (AIR experiments) at air velocities ranging between 0.5–12 m s−1. Different geometries were used for each of the products: cubes in carrots (2 L = 8.5 mm), cylinders in persimmon (2 L = 30 mm and 2 R = 13 mm) and slabs in lemon peel (L = 10 mm). Drying kinetics were modelled by considering different diffusion models according to the geometry.The results show that air velocity and raw material characteristics play a role in convective drying kinetics assisted by power ultrasound. Power ultrasound increased effective moisture diffusivity at low air velocities for all the products. However, in the case of lemon peel, ultrasound also improved the drying rate at high air velocities. This behaviour may be explained by the disruption of the acoustic field at high air flow rates and the different level of intensity required due to the structure of the products. Therefore, the raw material constitutes an important variable to establish the influence of power ultrasound on convective drying.  相似文献   

19.
We investigated the kinetics of supercritical CO2 (SCCO2)-based drying of silica aerogels, a common, but time consuming and energy intensive step in their manufacture. An apparatus was developed to continuously measure alcohol extraction rates from alcogels as a function of key process variables by two redundant techniques. Kinetics data are reported for the drying of 2.5 mm, 5 mm, and 7.5 mm thick annular alcogels by pumping SCCO2 through a 10 mm-thick concentric annulus surrounding their exterior. The SCCO2 was at a temperature of 323 K and a pressure of 12.4 MPa and its mass flow rate varied from 1 kg/h to 5 kg/h. Gel thickness and SCCO2 flow rate were both shown to significantly effect drying rate and required drying time. The results of a conjugate mass transfer model assuming pure diffusion in the alcogel compared favorably with the data when the composition dependence of molecular diffusivity was captured utilizing available correlations.  相似文献   

20.
A laboratory scale microwave dryer was used to dry the garlic cloves, applying microwave power in the range of 10–40 W, air temperature in the range of 40–70 °C and air velocity in the range of 1.0–2.0 m/s. Heat and mass transfer coefficient during the drying process varied in the range of 35.23–79.54 W/m2C and 4.26–6.34 × 10?2 m/s. The temperature of the product rose rapidly in the early part of the drying and became almost stable thereafter. The Biot mass transfer number confirmed that moisture diffusion was the limiting factor in microwave drying of garlic. The effective moisture diffusivity, which ranged between 1.29–31.68 × 10?10 m2/s increased with the increase in microwave power but decreased with increase in air velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号