首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A new organosolv biomass fractionation process (Clean Fractionation, CF) for the separation of lignocellulosic raw material into cellulose, hemicellulose and lignin has been developed. The lignocellulosic material is separated with a ternary mixture of methyl isobutyl ketone, ethanol and water in the presence of an acid promoter, which selectively dissolves lignin and hemicellulose, leaving cellulose as an undissolved solid. The resulting single phase liquor is treated with water giving an organic phase containing lignin and an aqueous phase containing hemicellulose. For woody feedstocks, the yield of the cellulose fraction across all separations averaged 47.7 wt% (±1.1). Representative separations gave cellulose fractions with average Klason lignin contents of 2.0% at acid concentrations of 0.1 M H2SO4 or greater. Little or no galactose, mannose or arabinose is observed in the cellulose, and at an acid concentration of 0.2 M, average xylose contents as low as 0.22% were observed. Average glucan contents for representative cellulose samples of 92.7% were observed, and rose as high as 98.2% for separations using 0.2 M H2SO4. Glucan contents as high as 97% were also observed if the cellulose was bleached using either a QPD or QPDE sequence. The average yield of the lignin fraction was 18.3 wt%. Representative lignin samples gave an average Klason lignin value of 91% with selected lignin samples exhibiting residual sugar levels of <0.5%. The aqueous hemicellulose fraction contains a higher level of non-sugar components, but can be purified by ion exchange chromatography.  相似文献   

2.
The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 °C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3–9 g/g) and enzyme to solid ratio (8–16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR = 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号