首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
文章介绍了一种基于进化式模糊神经网络时间预测系统,它是一种快速自适应的局部学习模型;进化式模糊神经网络是一个特殊类型的神经网络,它能通过进化其结构和参数来容纳新的数据.文章重点介绍了网络结构、学习方法及创建、修剪、聚合规则节点的算法;实验结果表明:模糊隶属函数的个数,规则的修剪和聚合等训练参数,与网络的行为和预测结果有很重要的关系.  相似文献   

2.
模糊神经网络在时间序列预测中的应用   总被引:8,自引:2,他引:8  
文中提出了将模糊聚类与梯度算法相结合的一种改进的训练模糊神经网络的混合型算法。模拟结果表明,模糊神经网络可以成功地用于时间序列的预测,模糊神经网络的训练速度与模拟精度都优于传统多层BP网络。  相似文献   

3.
王林  彭璐  夏德  曾奕 《计算机工程与科学》2015,37(12):2270-2275
针对BP神经网络学习算法随机初始化连接权值和阈值易使模型陷入局部极小点的缺点,设计了一种自适应差分进化算法优化BP神经网络的混合算法。该混合算法中,差分进化算法采用自适应变异和交叉因子优化BP神经网络的初始权值和阈值,再用预寻优得到的初始权值和阈值训练BP神经网络得到最优的权值和阈值。首先对改进的自适应差分进化算法运用测试函数进行性能测试,然后用一个经典时间序列问题对提出的混合算法进行了检验,并与一般的神经网络、ARIMA预测模型及其它混合预测模型进行了对比,实验结果表明,本文提出的混合算法有效并且明显提高了预测精度。  相似文献   

4.
针对BP神经网络预测模型收敛速度慢和容易陷入局部极小值的缺点,将差分进化算法和神经网络结合起来,提出了一种基于差分进化算法的BP神经网络预测混沌时间序列的方法,利用差分进化算法的全局寻优能力对BP神经网络的权值和阈值进行优化,然后训练BP神经网络预测模型求得最优解,将该预测方法用到3个典型的混沌时间序列进行算法的有效性验证,并与BP算法的预测精度进行了比较,仿真结果表明该方法对混沌时间序列预测具有更好的非线性拟合能力和更高的预测准确性。  相似文献   

5.
提出一种基于梯度下降法的混合进化算法,用于确定径向基函数(RBF)神经网络结构和优化其参数.在进化算法中嵌入梯度下降算子,对每一代中若干个精英个体以一定概率利用梯度下降法进行搜索,以加强算法的局部搜索能力.利用混合进化算法对RBF网络结构和参数同时进行训练和优化,对网络节点数和参数进行混合编码.仿真实验结果表明该RBF网络具有较强的泛化能力.  相似文献   

6.
《软件》2017,(5):98-106
本文提出了以时间延迟坐标嵌入方法为基础的周期性波动预测模型。此模型使用一种叫作具有加权模糊隶属函数的神经网络的神经模糊网络(NEWFM)。在主要综合指标的预处理时间序列中使用了时间延迟坐标嵌入方法,并将此序列用作此神经模糊网络的输入数据来预测商业周期。以小波变换为基础使用其他方法进行了对比性研究,并对性能比较进行了主成分分析。使用线性回归分析来测试预测结果,以比较输入数据与目标类别,国内生产总值的近似值。另外两个模型忽略了基于混沌的模型捕捉非线性动态模型和系统中的相互作用。检验结果表明基于混沌的方法能够有效地增强预测能力,因此表明此方法比其他方法具有更优越的性能。  相似文献   

7.
基于神经网络的时间序列预测方法进展   总被引:10,自引:0,他引:10  
首先对神经网络应用于时间序列预测的方法进行了详细的介绍。在此基础上与传统的预测方法进行了比较,接着概括分析了几种不同的神经和于预测的结果。指出由于神经网络独特的信息处理能力,使得它为一类高度非线性动态关系的时间序列预测提供了一条有效途径。最后,对神经网络在时间序列预测领域的进一下邮  相似文献   

8.
基于小波神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该网络进行模拟实验,证明了该神经网络具有较好的预测效果。  相似文献   

9.
基于神经网络的混沌时间序列短期预测   总被引:3,自引:0,他引:3  
张桂英 《计算机工程》2002,28(11):197-198
将神经网络理论、预测理论等引入混沌领域,采用了一种基于BP网络的预测方法,给出了该方法中神经网络的具体实现过程,经计算机仿真表明该方法是行之有效的,并给出了具体应用事例。  相似文献   

10.
基于神经网络模型的时间序列预测算法及其应用   总被引:11,自引:0,他引:11  
提出了一种神经网络模型的时间序列直接多步预测算法。网络的学习采用具有遗忘因子的BP算法与时差方法相结合的混合算法,解决了经典BP算法在直接多步预测中不能渐进计算的问题,同时网络具备一定的结构学习能力。采用该算法对现场采集的高炉铁水含硅量时间序列数据进行预报实验,表明本文提出的直接多步预测方法是可行的。  相似文献   

11.
基于RBF神经网络的时间序列预测   总被引:17,自引:0,他引:17  
前馈神经网络在时间序列预测中的应用已得到充分地认可,一些模型已经提出,例如多层感知器(MLP),误差反向传播(BP)和径向基函数(RBF)网络等等。相对于其他前馈神经网络,RBF网络学习速度快,函数逼近能力强,因而在时间序列预测方面具有很好的应用前景。  相似文献   

12.
重点研究进化回归神经网络对时序数据和关联数据的建模能力。针对两个标准问题,采用不同形式的建模数据,比较了前向网络和回归神经网络的建模及预测效果,进一步将进化算法用于不同结构回归神经网络的训练并比较了它们的建模能力。仿真结果表明回归神经网络对时序关联数据有很好的建模和预测能力,相比于前向网络,无需过程时序特点的先验知识,可以采用最简单的建模数据形式。而进化算法相比于常规的梯度下降算法,用于训练不同的回归网络结构通用性好,且训练过程不受局部极小问题的困扰,适当规模的训练过程可以获得性能良好的神经网络模型。  相似文献   

13.
基于神经网络的非线性时间序列故障预报   总被引:4,自引:0,他引:4  
对模型未知非线性系统, 将系统输出组成时间序列并通过空间嵌入的方法转化为一个离散动态系统. 利用线性 AR 模型拟合时间序列的线性部分, 用神经网络拟合时间序列的非线性部分并补偿外界未知的扰动, 提出了通过对状态的观测实现时间序列一步预测的方法. 利用滚动优化的思想将一步预测推广, 提出了时间序列的 N 步预测方法, 证明了时间序列预测误差有界. 通过对预测误差进行概率密度估计和检验, 提出了故障的预报方法. 对 F-16 歼击机的结构故障预报结果表明了方法的有效性.  相似文献   

14.
为了提高对混沌时间序列预测的精准度,提出了一种基于模糊信息粒化和注意力机制的混合神经网络预测模型。首先对数据进行归一化处理,利用模糊信息粒化对数据的复杂度进行简化;然后将经过相空间重构后的样本输入卷积神经网络(CNN)提取空间特征;再利用长短期记忆神经网络(LSTM)进一步提取时间特征;最后将融合特征传递给注意力机制提取关键特征,得出预测结果。选取Logistic、洛伦兹和太阳黑子混沌时间序列进行实验,并与CNN-LSTM-Att模型、CNN-LSTM模型、FIG-CNN模型、FIG-LSTM模型、CNN模型、LSTM模型、支持向量机(SVM)及误差逆传播(BP)模型进行对比分析。结果表明,所提的预测模型预测精度更高,误差更小。  相似文献   

15.
模糊神经网络和SARIMA模型分别对非线性和线性时间序列有很好的预测能力,但在实际应用中大多数序列并非稳定、单纯线性或非线性的。为了提高预测精度,提出了一种基于T-S模糊神经网络与SARIMA结合的时间序列预测模型。针对悉尼航班乘客收入数据给出了三种混合模型,并与模糊神经网络、支持向量机、SARIMA和BP神经网络四种单独模型进行比较。实验结果表明,从预测精度和参数选择方面来看,所给模型是有效的。  相似文献   

16.
古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。  相似文献   

17.
Qun  Dai  Songcan  Chen  Benzhu  Zhang 《Neural Processing Letters》2003,18(3):217-231
Circular back-propagation neural network (CBP) put forward by Sandro Ridella and Stefano Rovetta, a generalized model of multi-layer perceptron (MLP), possesses strong capabilities of generalization and adaptation to unknown inputs. And they can flexibly construct vector quantization (VQ) and radial basis function (RBF) networks under the CBP framework. With the original structure of CBP remaining unchanged, in this Letter a more generalized network model ICBP (Improved Circular Back-Propagation Neural Network) was designed by adding an extensive node with quadratic form to the original CBP inputs and endowing fixed values to the weights between this node and all the hidden nodes. An interesting property of ICBP is that although it has less adaptable weights, it is better in generalization and adaptability than CBP. Moreover, in order to partially solve the problem of local minima, we adopt the method of adding controlled noise to desired outputs. Finally, ithas been proved by experiments that ICBP is better than CBP in the capabilities of forecasting and function approximation.  相似文献   

18.
人工神经元网络的研究技术在理论和实际应用上已经比较成熟,在信号处理系统中也采用该技术进行非线性时间序列信号的预测分析。但是由于该理论黑箱模型的特点,无法引入先验知识,从而预测精度难以提高。针对该问题,文中提出了智能神经网络的动态预测模型,引入智能神经元,建立区别于传统神经网络的预测模型,达到了较为理想的预测效果。并以工业生产参数的时间序列预测——某油井生产过程中MinCurrent参数值,作为实验模型,对该方法进行了验证,结果表明了该模型预测精度较高、计算速度快。  相似文献   

19.
时序数据处理任务中,循环神经网络模型以及相关衍生模型有较好的性能,如长短期记忆模型(LSTM),门限循环单元(GRU)等.模型的记忆层能够保存每个时间步的信息,但是无法高效处理某些领域的时序数据中的非等时间间隔和不规律的数据波动,如金融数据.本文提出了一种基于模糊控制的新型门限循环单元(GRU-Fuzzy)来解决这些问...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号