首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the angiogenic cytokine vascular endothelial growth factor (VEGF) on nitric oxide synthase (NOS) and cyclooxygenase (COX) expression was examined in human (HUVEC) and bovine (BAE) endothelial cells. VEGF (10 ng/ml) induced constitutive COX-1 expression in both HUVEC and BAE, but not the cytokine-inducible isoform, COX-2, inducible NOS or endothelial NOS. In HUVEC, VEGF (10 ng/ml) increased COX activity, but COX inhibitors had no effect on the proliferative response of endothelial cells to this cytokine. In conclusion the induction of COX-1 by VEGF is not involved in the mitogenic response of endothelial cells, but may be an important regulatory mechanism in the maintenance of vascular integrity.  相似文献   

2.
In the vascular system, distinct isoforms of nitric oxide synthase (NOS) generate nitric oxide (NO), which acts as a biological messenger. Its role in the development of transplant arteriosclerosis (TA) is still unclear. To investigate whether NO is involved in TA, we studied the expression of NOS isoforms, inducible NOS (iNOS) and endothelial NOS (eNOS), by immunohistochemistry and in situ hybridization during the first two post-transplantation months and their relation with cold ischemia (1 to 24 hours) and reperfusion injury using an aortic transplantation model in the rat. We found an increased iNOS expression in the intima and adventitia and a decreased expression in the media, whereas eNOS expression was not significantly altered during the development of TA. Co-localization studies suggested that iNOS-positive cells were vascular smooth muscle cells, monocyte-derived macrophages, and endothelial cells. Prolonged ischemic storage time resulted in an increase in eNOS expression in the neointima. In situ hybridization showed iNOS mRNA expression by vascular cells in the neointima and media. NO produced by iNOS and eNOS may be involved, at least in part, in the pathogenesis of TA in aortic grafts. Additional studies are needed to confirm the modulatory mechanism of NO during the development of TA.  相似文献   

3.
Kaposi's sarcoma (KS) is a tumor of presumed vascular origin frequently found in patients with AIDS. Recent data suggest that the development of KS is linked with the presence of a newly recognized herpesvirus, human herpesvirus type 8. Nitric oxide (NO), a messenger molecule with vasoactive, antitumor, and antimicrobial effects, is produced by three isoforms of nitric oxide synthases (NOS). In the present report, we investigated the expression of NOS isoforms in KS. By NADPH-diaphorase histochemistry, NOS activity was detectable in endothelia and CD45+ cells within KS lesions. Reactivity for endothelial NOS (eNOS) was found in blood vessel endothelia; however, eNOS reactivity was negative in KS spindle cells in 12 of 17 tumors, and moderately positive in the other 5 lesions. In contrast to KS, tumor cells in three hemangiomas and one angiosarcoma were strongly positive for eNOS. Inducible NOS (iNOS) was absent from KS tumor cells but was found regularly in CD45+, HLA-DR+ cells within the lesions. In five KS-derived spindle cell cultures, neither eNOS nor iNOS proteins were detectable. The sporadic expression of eNOS by KS spindle cells in vivo and the absence of eNOS protein from KS spindle cells in tissue cultures argue against the possibility that the cells are derived from blood vessel endothelia. The consistent expression of iNOS by CD45+, HLA-DR+ cells within KS lesions strongly suggests that leukocyte-derived NO participates in the pathology of this tumor.  相似文献   

4.
5.
It has been suggested that inhibitors of nitric oxide synthesis are of value in the treatment of hypotension during sepsis. In this pilot study, we examined the effects of inhibition of nitric oxide synthesis by continuous infusion of N(omega)-nitro-L-arginine methyl ester (L-NAME) at 1.5 mg/kg/h in a patient with severe septic shock. L-NAME produced a rise in mean arterial blood pressure and systemic vascular resistance; catecholamine infusion could be reduced. Parallel to these findings, there was a 50% reduction in cardiac output and a 5-fold rise in pulmonary vascular resistance, which resulted in severe pulmonary hypertension after 3 h of L-NAME infusion, for which the infusion had to be stopped. Following the termination of L-NAME infusion, pulmonary artery pressure and blood pressure returned to baseline values, although pulmonary and systemic vascular resistance remained elevated for several hours. We conclude that nitric oxide appears to play a role in the cardiovascular derangements during human sepsis. Inhibition of nitric oxide synthesis with L-NAME can increase blood pressure and systemic vascular resistance. However, reduced cardiac output and pulmonary hypertension are possible side effects of continuous NO synthase inhibition. These side effects necessitate careful monitoring and may hinder the clinical application of NO synthase inhibitors.  相似文献   

6.
Inhaled nitric oxide (NO) causes selective pulmonary vasodilation and improves gas exchange in acute lung failure. In experimental pulmonary hypertension, we compared the influence of the aerosolized vasodilatory prostaglandins (PG) PGI2 and PGE1 on vascular tone and gas exchange to that of infused prostanoids (PGI2, PGE1) and inhaled NO. An increase of pulmonary artery pressure (Ppa) from 8 to approximately 34 mmHg was provoked by continuous infusion of U-46619 (thromboxane A2 (TxA2) analogue) in blood-free perfused rabbit lungs. This was accompanied by formation of moderate lung oedema and severe ventilation-perfusion (V'/Q') mismatch, with predominance of shunt flow (>50%, assessed by the multiple inert gas elimination technique). When standardized to reduce the Pps by approximately 10 mmHg, inhaled NO (200 ppm), aerosolized PGI2 (4 ng x kg(-1) x min(-1)) and nebulized PGE1 (8 ng x kg(-1) x min(-1)) all reduced both pre- and postcapillary vascular resistance, but did not affect formation of lung oedema. All inhalative agents improved the V'/Q' mismatch and reduced shunt flow, the rank order of this capacity being NO > PGI2 > PGE1. In contrast, lowering of Ppa by intravascular administration of PGI2 and PGE1 did not improve gas exchange. "Supratherapeutic" doses of inhaled vasodilators in control lungs (400 ppm NO, 30 ng x kg(-1) x min(-1) of PGI2 or PGE1) did not provoke vascular leakage or affect the physiological V'/Q' matching. We conclude that aerosolization of prostaglandins I2 and E1 is as effective as inhalation of nitric oxide in relieving pulmonary hypertension. When administered via this route instead of being infused intravascularly, the prostanoids are capable of improving ventilation-perfusion matching, suggesting selective vasodilation in well-ventilated lung areas.  相似文献   

7.
We studied the effects of nitric oxide (NO) on prostanoid production, cyclooxygenase (COX-2) expression and [3H]arachidonic acid (AA) release in RAW 264.7 macrophagic cells and rat microglial primary cultures. Inhibition of NO synthesis enhanced microglial prostanoid production without affecting that of RAW 264.7 cells. Both 3-morpholinosydnonimine (SIN-1), (which, by releasing NO and superoxide, leads to the formation of peroxynitrite), and S-nitroso-N-acetylpenicillamine (SNAP), (which releases only NO), inhibited microglial prostanoid production, by preventing COX-2 expression. In contrast, in RAW 264.7 cells, SIN-1 enhanced both basal and LPS-stimulated prostanoid production by upregulating COX-2, while SNAP stimulated basal production and slightly inhibited the LPS-induced production, as a cumulative result of enhanced AA release and depressed COX-2 expression. Thus, reactive nitrogen intermediates can influence prostanoid production at distinct levels and in different way in the two cell types, and results obtained with RAW 264.7 cells can not be extrapolated to microglia.  相似文献   

8.
H Onoue  M Tsutsui  L Smith  A Stelter  T O'Brien  ZS Katusic 《Canadian Metallurgical Quarterly》1998,29(9):1959-65; discussion 1965-6
BACKGROUND AND PURPOSE: Gene transfer with recombinant viral vectors encoding vasodilator proteins may be useful in therapy of cerebral vasospasm after subarachnoid hemorrhage (SAH). Relaxations mediated by nitric oxide are impaired in cerebral arteries affected by SAH. The present study was designed to determine the effect of SAH on the efficiency of ex vivo adenovirus-mediated gene transfer to canine basilar arteries and to examine whether expression of recombinant endothelial nitric oxide synthase (eNOS) gene may have functional effects on vasomotor reactivity of spastic arteries affected by SAH. METHODS: Replication-deficient recombinant adenovirus vectors encoding bovine eNOS (AdCMVeNOS) and Escherichia coli beta-galactosidase (AdCMVbeta-Gal) genes were used for ex vivo gene transfer. Rings of basilar arteries obtained from control dogs and dogs exposed to SAH were incubated with the vectors in minimum essential medium. Twenty-four hours after gene transfer, expression and function of the recombinant genes were evaluated by (1) histochemical or immunohistochemical staining, (2) beta-galactosidase protein measurement, and (3) isometric tension recording. RESULTS: Transduction with AdCMVbeta-Gal and AdCMVeNOS resulted in the expression of recombinant beta-galactosidase and eNOS proteins mostly in the vascular adventitia. The expression of beta-galactosidase protein was approximately 2-fold higher in SAH arteries than in normal arteries. Endothelium-dependent relaxations caused by bradykinin and substance P were suppressed in SAH arteries. The relaxations to bradykinin were significantly augmented in both normal and SAH arteries after AdCMVeNOS transduction but not after AdCMVbeta-Gal transduction. The relaxations to substance P were augmented by AdCMVeNOS transduction only in normal arteries. Bradykinin and substance P caused relaxations even in endothelium-denuded arteries, when the vessels were transduced with AdCMVeNOS. These endothelium-independent (adventitia-dependent) relaxations to bradykinin observed after AdCMVeNOS transduction were similar between normal and SAH arteries, whereas those to substance P were significantly reduced in SAH arteries compared with normal arteries. CONCLUSIONS: These results suggest that expression of recombinant proteins after adenovirus-mediated gene transfer may be enhanced in cerebral arteries affected by SAH and that successful eNOS gene transfer to spastic arteries can at least partly restore the impaired nitric oxide-mediated relaxations through local (adventitial) production of nitric oxide.  相似文献   

9.
In a rat model of glomerular immune injury induced by administration of anti-glomerular basement membrane antibody and resembling human rapidly progressive glomerulonephritis, we explored whether activation of inducible nitric oxide synthase (iNOS) regulates synthesis of eicosanoids originating from cyclooxygenation or lipoxygenation of arachidonic acid. At early stages (24 hr) of injury, inhibition of iNOS using the selective inhibitor L-N6-(1-iminoethyl) lysine (L-NIL) at doses sufficient to reduce urinary excretion of nitrate/nitrite, reduced glomerular synthesis of the prostaglandins PGE2 and PGI2, but had no effect on that of thromboxane A2 (TxA2). The syntheses of 5-hydroxyeicosatetraenoic acid (HETE), 15-HETE and leukotriene B4 (LTB4) were also reduced. That of 12-HETE remained unchanged. We also explored the effect of arachidonate cyclooxygenation and lipoxygenation eicosanoids on iNOS expression. Administration of the cyclooxygenase (COX) inhibitor, indomethacin, at doses sufficient to inhibit glomerular prostaglandin synthesis, increased iNOS mRNA levels in glomeruli. Administration of the 5-lipoxygenase (5-LO) inhibitor, MK-0591, at doses sufficient to inhibit glomerular LTB4 synthesis also increased iNOS mRNA. The effect of 5-LO inhibition on iNOS expression was more pronounced than that of COX inhibition. In nephritic animals given the iNOS inhibitor, L-NIL, or indomethacin proteinuria worsened. In those given the 5-lipoxygenase inhibitor there was no change in urine protein excretion. These observations point to regulatory interactions between the arachidonic acid and the L-arginine: NO pathways in glomerulonephritis. These interactions are of importance in considering antiinflammatory strategies based on inhibition of iNOS or of specific eicosanoids.  相似文献   

10.
The generation of nitric oxide is regulated by several factors, including the substrates and cofactors supplementation. Decreased expression and activity of nitric oxide synthase as well as diminished amount of L-arginine or enzyme cofactors results in the inhibition of nitric oxide generation in vascular wall cells. GTP cyclohydrolase 1 is a key enzyme involved in the synthesis of tetrahydrobiopterin, one of the most important cofactors of NO synthases. We have demonstrated that oxidized LDL inhibit not only inducible nitric oxide synthase gene expression but also GTP cyclohydrolase I gene expression in interleukin-1 beta activated rat vascular smooth muscle cells in vitro. It is postulated that diminished availability of tetrahydrobiopterin may additionally impair the generation of nitric oxide in atherosclerosis.  相似文献   

11.
In cerebellar granule cells, potassium cyanide (KCN) activates the NMDA receptor resulting in generation of nitric oxide and reactive oxygen species (ROS). To study the mechanism by which KCN stimulates ROS generation, the action of cyanide on the enzymatic pathways known to generate ROS were studied. The oxidant-sensitive fluorescent dye, 2,7-dichlorofluorescin was used to measure intracellular levels of nitric oxide and ROS in cerebellar granule cells. Using selective enzyme inhibitors, it was shown that both protein kinase C and phospholipase A2 are involved in KCN-stimulated generation of NO and ROS. In cells treated with indomethacin or nordihydroguairetic acid, inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX) respectively, attenuated (approximately 35%) KCN-induced generation of oxidant species. When L-NAME (LG-nitro-L-arginine methyl ester) (nitric oxide synthase inhibitor, NOS) was combined with either indomethacin or nordihydroguairetic acid, generation of oxidant species was blocked by more than 80%. Pretreatment with NS398 (COX-2 inhibitor) significantly decreased ROS generation indicating the involvement of COX-2 in KCN-induced oxidant generation. Treatment with L-NAME + NS398 blocked oxidant species generation, reflecting involvement of NOS. The participation of cytochrome P450 was not evident because SKF525A did not significantly reduce KCN-induced ROS generation. Furthermore, a correlation was observed between oxidant generation and lipid peroxidation of cellular membranes (as determined by thiobarbituric acid levels). Pretreatment with inhibitors of protein kinase C, phospholipase A2 or COX, LOX, COX-2 partially blocked KCN-induced formation of thiobarbituric acid reactive substance, whereas coincubation of L-NAME with the inhibitors decreased lipid peroxidation by 60 to 90%. In cytotoxicity studies, KCN-induced cell death was partially blocked by the inhibitors and significant protection was observed when L-NAME was combined with these compounds. These findings show that activation of phospholipase A2 and subsequent metabolism of arachidonic acid by the COX-2 and LOX pathways and NOS contribute to cyanide-induced ROS production.  相似文献   

12.
Cyclooxygenase (COX)-2 is induced by proinflammatory cytokines such as interleukin (IL)-1 beta, cytokines produced from helper T cell subpopulation Th 1, such as interferon-gamma and tumor necrosis factor-beta. Cytokines produced by the T cell such as IL-4, IL-10, and IL-13 down-regulate induction of COX-2. The novel MAP kinase pathway, JNK and/or p 38, are important intracellular signaling pathways for induction of COX-2. The increased production of prostaglandin E2 by upregulation of COX-2 increases IL-6 production. By utilizing a COX-2 blocker, it is possible to decrease IL-6 production via reduction of prostanoid production, thereby attenuating the systemic inflammatory response. Nitric oxide (NO) and prostanoids are also known to interact and regulate each other. It is important to note the interactions between prostanoids and cytokines or other inflammatory mediators such as NO in understanding the mechanism of the anti-inflammatory effects of prostanoid regulation.  相似文献   

13.
Aspirin and sodium salicylate enhance to a similar extent the production of nitric oxide (NO) in cultured smooth muscle cells following stimulation by interleukin-1beta (IL-1beta). The similar potencies of aspirin and sodium salicylate indicate that acetylation of cellular macromolecules is not essential for the enhancement of NO production. The failure of added prostaglandin E2 (PGE2) or Thromboxane A2 (TXA2) to overcome the effects of aspirin or sodium salicylate indicates that these effects are not simply the result of inhibition of prostaglandin synthesis. The enhancement of NO production occurs dependent of the effects of these agents on induction of inducible nitric oxide synthase (iNOS) expression by IL-1beta. Aspirin and sodium salicylate enhance the induction of iNOS expression by IL-1beta. We previously reported that pretreatment of vascular smooth muscle cells (VSMCs) with high glucose decreased the response of the cells by IL-1beta, that is, the induction of iNOS expression and NO production. We investigated the effect of aspirin and sodium salicylate on the response by IL-1beta of VSMCs pretreated with high glucose (25 mM). Aspirin and sodium salicylate ameliorate the down-regulation of iNOS expression and the decrease of NO production caused by pretreatment with high glucose (25 mM). These results suggest a possible therapeutic role in atherosclerotic disease and diabetes mellitus for aspirin and sodium salicylate by enhancing the level of iNOS expression and NO production.  相似文献   

14.
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 micrometer) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.  相似文献   

15.
The mechanisms that regulate vascular resistance in the liver are an area of active investigation. Previously, we have shown that nitric oxide (NO) modulates hepatic vascular tone in the normal rat liver. In this study, the production of NO is examined in further detail by isolating sinusoidal endothelial cells (SEC) from the rat liver. Endothelial NO synthase (eNOS) was present in SEC based on Western blotting and confocal immunofluorescence microscopy. Exposure of SEC to flow increased the release of NO. To investigate the relevance of these in vitro findings to the intact liver, we modified an in situ perfusion system to allow for direct measurement of NO release from the hepatic vasculature. NO was released from the hepatic vasculature in a time-dependent manner, and administration of N-monomethyl-L-arginine reduced NO release and increased portal pressure. Immunostaining of intact liver demonstrated eNOS localization to endothelial cells lining the hepatic sinusoids. These findings demonstrate that SEC in vitro and in vivo express eNOS and produce NO basally, and increase their production in response to flow. Additionally, an increase in portal pressure concomitant with the blockade of NO release directly demonstrates that endogenous endothelial-derived NO modulates portal pressure.  相似文献   

16.
17.
-Tacrolimus (FK 506) is a powerful, widely used immunosuppressant. The clinical utility of FK 506 is complicated by substantial hypertension and nephrotoxicity. To clarify the mechanisms of FK 506-induced hypertension, we studied the chronic effects of FK 506 on the synthesis of endothelin-1 (ET-1), the expression of mRNA of ET-1 and endothelin-converting enzyme-1 (ECE-1), the endothelial nitric oxide synthase (eNOS) activity, and the expression of mRNA of eNOS and C-type natriuretic peptide (CNP) in rat blood vessels. In addition, the effect of the specific endothelin type A receptor antagonist FR 139317 on FK 506-induced hypertension in rats was studied. FK 506, 5 mg. kg-1. d-1 given for 4 weeks, elevated blood pressure from 102+/-13 to 152+/-15 mm Hg and increased the synthesis of ET-1 and the levels of ET-1 mRNA in the mesenteric artery (240% and 230%, respectively). Little change was observed in the expression of ECE-1 mRNA and CNP mRNA. FK 506 decreased eNOS activity and the levels of eNOS mRNA in the aorta (48% and 55%, respectively). The administration of FR 139317 (10 mg. kg-1. d-1) prevented FK 506-induced hypertension in rats. These results indicate that FK 506 may increase blood pressure not only by increasing ET-1 production but also by decreasing NO synthesis in the vasculature.  相似文献   

18.
We addressed the hypothesis that administration of nitric oxide synthase inhibitor, NG -nitro-L-arginine methyl ester (L-NAME) does not result in a sustained suppression of nitric oxide (NO) synthesis, because of a compensatory expression of inducible nitric oxide synthase (iNOS). L-NAME was administered in the drinking water (0.1-1.0 mg/ml) for 7 days to guinea pigs and rats. Nitric oxide synthesis was assessed by [1] ex vivo formation of nitrite in blood vessels and intestine [2] tissue levels of cGMP [3] iNOS gene expression by RT-PCR [4] NADPH diaphorase staining [5] direct assessment of NO release in tissue explants using a microelectrode/electrochemical detection system. Chronic L-NAME administration elevated intestinal cGMP and nitrite levels in guinea pigs (p < 0.05). In rats, intestinal nitrite levels were comparable in control and L-NAME treatment groups, whereas direct assessment of NO release defined a marked increase in the L-NAME group. Chronic L-NAME resulted in an induction of iNOS gene expression in rats and guinea pigs and novel sites of NADPH diaphorase staining in the intestine. We conclude that iNOS expression is responsible for a compensatory increase or normalization of NO synthesis during sustained administration of L-NAME.  相似文献   

19.
20.
OBJECTIVE: To evaluate the presence of nitrotyrosine (NT) residues in placental villous tissue of diabetic pregnancies as an index of vascular damage linked to oxidative stress. RESEARCH DESIGN AND METHODS: Villous tissue was collected and flash frozen after delivery from 10 class C and D IDDM patients (37.9+/-3.2 weeks) and 10 normotensive pregnant individuals (37.5+/-3.8 weeks). Serial sections of tissue were immunostained with specific antibodies to NT, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and manganese superoxide dismutase (MnSOD). Sections were scored for intensity of immunostaining (0-3) by three observers blinded to the identity of tissue. RESULTS: All tissues demonstrated immunostaining for eNOS in both syncytiotrophoblast and stem villous vascular endothelium with no apparent differences between groups. Immunostaining for iNOS was seen in the villous stroma, but again was not different between the two groups. Significantly more intense NT staining was apparent in vascular endothelium and villous stroma (both P < 0.02) of diabetic placentas. The endothelium of large villous vessels of diabetic tissues also showed more intense immunostaining for MnSOD (P < 0.01). CONCLUSIONS: In these diabetic pregnancies, we were unable to show increased eNOS, unlike previous findings in preeclamptic pregnancies. The presence of NT may indicate vascular damage in the diabetic placenta due to peroxynitrite action formed from increased synthesis/interaction of nitric oxide and superoxide. The apparently paradoxical increase in MnSOD expression may be an adaptive response to increased superoxide generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号