首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
C. Borsellino  G. Di Bella   《Materials & Design》2009,30(10):4054-4059
The aim of this work was to make and test some sandwich structures, made of biomimetic cellular cores of recycled paper. In a preliminary study some paper laminates were investigated. Then two different kinds of cores were made by simple processes, according to two natural structures (i.e. feather and honeycomb). To evaluate the mechanical properties of these new sandwiches, static flexural, flatwise and edgewise compression tests were performed.  相似文献   

2.
A novel thermo-chemical–mechanical analysis of the pultrusion process is presented. A process simulation is performed for an industrially pultruded rectangular hollow profile containing both unidirectional (UD) roving and continuous filament mat (CFM) layers. The reinforcements are impregnated with a commercial polyester resin mixture (Atlac 382). The reactivity of the resin is obtained from gel tests performed by the pultruder. The cure kinetics parameters are estimated from a fitting procedure against the measured temperature. The cure hardening instantaneous linear elastic (CHILE) model is adopted for the evolution of the resin elastic modulus using the temperature-dependent elastic response provided by the resin supplier. The numerical model predictions for the warpage trend at the end of the process are found to agree well with the warpage observed in the real pultruded products. In addition, the calculated warpage magnitude is found to be in the measured range of warpage magnitude for the manufactured part.  相似文献   

3.
The utilization of bio-based engineering polymers as a matrix material for cellulosic fiber reinforced composites has become an important focus in materials research. This is due to a rising demand for sustainable materials from renewable resources. In addition to this aspect, the bio-based materials provide an advantage for lightweight applications with their lower density. In this investigation, the completely bio-based polyamide 10.10, with a melting point above 200 °C, was used as a polymer matrix. Chopped man-made cellulose fibers (Cordenka CR-Type) were investigated as reinforcement for use in injection molded applications. A co-rotating twin-screw extruder with a screw-diameter of 18 mm was used for compounding. It was verified that reinforcing polyamide 10.10 with 20 wt% and 30 wt% cellulosic fibers is possible, resulting in an increase of impact and tensile properties. Furthermore, it was shown that the temperatures and screw-configurations of the twin-screw extruder only result in different fiber length distributions but in minor differences of the morphological structure and mechanical properties of PA 10.10 with 20 wt% fibers. Compounds with 30 wt% cellulose fibers show significant higher impact properties that those with 30 wt% glass fibers.  相似文献   

4.
5.
In this study, a novel approach was used to fabricate Al2O3 nanoparticle reinforced aluminum composites to avoid agglomeration of nanoparticles in matrix. Al2O3 nanoparticles were separately milled with aluminum and copper powders at different milling durations and incorporated into A356 alloy via stir casting method. The effects of milling process and milling time on mechanical properties of the composites were evaluated by hardness, tensile, and compression tests. Based on the results, some of the composites, reinforced with Al2O3-metallic mixed powders, showed higher mechanical performance compared with that of the pure Al2O3 nanoparticle reinforced composite. This enhancement is related to uniform distribution of individual nanoparticles and grain refinement of A356 matrix, shown in microstructural studies. Moreover, the results showed that an increase in milling time, led to a gradual decrease in mechanical performance of the samples. It can be related to further oxidation of metallic powders that can act as inclusions and also further probable contamination of nanoparticles with increase in milling time. Studies on the fracture surfaces revealed that the failure of matrix was the basic mechanism of fracture in the composites. Agglomerated nanoparticles were observed on dendrites in the fracture surface of the Al2O3–Al reinforcement samples.  相似文献   

6.
The objective of this study was to evaluate both physical and mechanical properties of particleboard panels manufactured from steamed material of oil palm trunks without using any adhesives. Experimental panels from fine particles and vascular strands of oil palm were manufactured. Modulus of rupture (MOR), internal bond strength (IB), thickness swelling (TS) and water absorption (WA) of the samples were tested based on Japanese Industrial Standards. Bonding quality of such binderless samples was also evaluated by using scanning electron microscope (SEM). Based on the findings on this work steaming of the raw material enhanced overall mechanical and physical characteristic of the samples. The highest MOR values of 8.12 MPa and 25.84 MPa were found for the samples made from fine particles and strands steamed at a temperature of 130 °C for 30 min, respectively. It appears that mechanical properties of the panels reduced when they exposed to beyond 30 min steaming time.  相似文献   

7.
This paper investigates the strengthening and toughening effects of carbon nanofibres (CNFs) on a self-healing thermoset/thermoplastic blend, i.e. an epoxy/poly (ε-caprolactone) (PCL) blend. The self-healing material system was prepared by polymer blending that produced a co-continuous phase-separated structure. The addition of CNFs altered the phase structures, leading to smaller domain sizes or even completely altering the phase separation mechanism, e.g. conversion from a co-continuous phase-separated structure to a particulate phase structure when the CNF content reached a certain level (0.3 wt% in this work). As the content of CNFs increased, the resulting nanocomposite became stronger and tougher, but the self-healing efficiency diminished; the optimal CNF content was found to be 0.2 wt%, which produced the highest strength, toughness and hardness, while achieving around 70% of healing efficiency.  相似文献   

8.
In the present work, the chemo-rheology of an industrial “orthophthalic” polyester system specifically prepared for a pultrusion process is characterized. The curing behaviour is first characterized using the differential scanning calorimetry (DSC). Isothermal and dynamic scans are performed to develop a cure kinetics model which accurately predicts the cure rate evolutions and describes the curing behaviour of the resin over a wide range of different processing conditions. The viscosity of the resin is subsequently obtained from rheological experiments using a rheometer. Based on this, a resin viscosity model as a function of temperature and degree of cure is developed and predicts the measured viscosity correctly. The evolution of the storage and loss moduli are also measured as a function of time using the rheometer which provides an information about the curing as well as the gelation. The temperature- and cure-dependent elastic modulus of the resin system is determined using a dynamic mechanical analyzer (DMA) in tension mode. A cure hardening and thermal softening model is developed and a least squares non-linear regression analysis is performed. The variation in elastic modulus with temperature and phase transition is captured for a fully cured resin sample.  相似文献   

9.
A significant improvement in fiber reinforced polymeric composite (FRPC) materials can be obtained by incorporating a very small amount of nanofiller in the matrix material. In this work, an ultrasonic liquid processor was used to infuse carbon nanofiber (CNF) into the polyester matrix which was then mixed with catalyst using a mechanical agitator. Both conventional and CNF-filled glass-fiber reinforced polyester composites (GRPC) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Excellent dispersion of CNFs into the polyester resin was observed from the scanning electron microscopy (SEM) micrographs. Flexural and quasi-static tests were performed for investigating the mechanical responses. Fracture surface was examined using optical microscopy (OM) and SEM. Flexure tests performed on the conventional GRPC, 0.1–0.4 wt.% CNF-filled GRPC showed up to 49% and 31% increase in the flexural strength and modulus, respectively, compared to the conventional one with increasing loading of CNFs up to 0.2 wt.%. Similar trend was seen in quasi-static compression properties. SEM evaluation revealed relatively less damage in the tested fracture surfaces of the nanophased composites in terms of matrix failure, fiber breakage, matrix–fiber debonding, and delamination, compared to the conventional one. This might be the result of better interfacial interaction between matrix and fibers, due to the presence of CNFs.  相似文献   

10.
The interest for the use of vegetal fibers as polymers reinforcement has recently increased because of their unique environmental and technological advantages. This work evaluated the use of Curauá fibers in polyamide-6 composites aiming at glass fiber replacement. Fiber content of 20, 30 or 40 wt% and fiber lengths of 0.1 or 10 mm were studied. Fibers were treated with N2 plasma or washed with NaOH solution, to improve their adhesion to PA-6. Samples with 20 wt% of short or long fibers, with or without pre-treatment, were compounded in two different co-rotating intermeshing twin-screw extruders. These samples were submitted to mechanical and thermal tests. In conclusion, non-dried raw materials improved fiber/matrix interfacial adhesion. Tensile and flexural properties of this composite are better than unfilled, but lower than glass fiber reinforced polyamide-6. However, its impact resistance and heat deflection temperature are similar to the glass fiber reinforced polyamide-6 and its lower density, enable it to replace this latter in specific non-critical applications.  相似文献   

11.
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters.In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.  相似文献   

12.
The nature of blending of virgin materials with reclaimed asphalt pavement (RAP) has been investigated using a multi scale approach using the dynamic shear rheometer (DSR), electron microscopy and computer tomography (CT). In order to simplify the visualization of the blending of the virgin and reclaimed materials five specially engineered hot asphalt mixtures were produced incorporating large mineral fraction (8/11 mm) of virgin aggregates and small fraction (2/4 mm) from RAP mixed with virgin bitumen. The complex modulus and phase angle of reclaimed binder from the blended mixtures were found to be between that of RAP and virgin binder. The CT slices of compacted cylindrical samples (150 mm diameter × 120 mm height) could incorporate the effect of compaction on the blending. They show lumped regions with virgin large aggregates as well as lumped regions of RAP aggregates. Using micro CT the spatial distribution of the different binders was investigated at the micro-scale. Millimeter size distinct clusters of virgin binder and clusters of RAP binder could be distinguished. The existence of RAP binder next to large virgin aggregates indicated the migration of the old RAP binder from the RAP aggregates to the virgin aggregates. From these CT images, it was not possible to verify if blending between the virgin and old binders occurred. Using electron microscopy micro-crack formations in the zone between old and new binder were identified suggesting weak spots that could lead to larger crack formation and propagation. However, using energy-dispersive X-ray spectroscopy good qualitative distribution of titanium dioxide tracer in the virgin binder in the mixture could be seen, indicating good blending at the investigated location. Hence, the results show that blending is not homogeneous throughout the sample. Some locations show good blending whereas other locations appear non-blended with micro-cracks forming at the binder boundaries.  相似文献   

13.
In this article, a pultruded unidirectional basalt fiber-reinforced polymer (BFRP) plate was thermally aged at 135 °C and 300 °C for 4 h, and subsequently immersed in distilled water or strong alkaline solution (simulating concrete pore water, pH = 12.6–13) for 3 months. The variation of the tensile and interlaminar shear (ILSS) properties of the BFRP plates was studied. Thermal aging exhibited a slight effect on both the longitudinal tensile properties and the interlaminar shear strength, although thermal decomposition of the resin matrix started at 300 °C and brought in a high void content (4.8%). FTIR and DMTA results indicate that thermal aging lead to postcuring and oxidation of the resin matrix, leading to an increase of the glass transition temperatures. Thermal aging accelerated the degradation of the BFRP plates in distilled water or alkaline solution at 20, 40 and 60 °C. In the studied hash immersion conditions of 60 °C alkaline solution for 3 months, the unaged, 135 °C aged and 300 °C aged BFRP samples showed reduction in the tensile strength by 43.2%, 62.3% and 74.1%, respectively. The higher the thermal aging and immersion temperatures, the more deterioration of the mechanical properties occurred. Alkaline solution immersion showed more adverse effects compared to the distilled water. The detrimental effects of the thermal aging were attributed to the formation of voids and cracks through which water or alkaline solution tended to easily penetrate into the BFRPs. The degradation of the resin due to thermal aging and immersion was analyzed with dynamic mechanical thermal analysis and scanning electron microscopy analysis. The long term variation of the tensile strength of BFRPs was evaluated based on the Arrhenius equation.  相似文献   

14.
Voids are one of the most significant defects found within composites and have been demonstrated to reduce the performance of composite structures. The understanding of the impact of the size and distribution of voids on laminate properties is still limited because voids have proven difficult to deliberately control. This study aims to understand the mechanisms by which voids are generated within out-of-autoclave cured laminates. In this study, a process of prepreg conditioning was developed to control the level of voids within test laminates. Non-conditioned laminates highlighted signs of void growth (1.5%), while conditioned laminates showed consistently low levels of voids (<0.3%). Mass spectrometry indicated higher levels of aqueous and solvent volatiles within the non-conditioned prepreg. Finally, Mode II fracture testing revealed a 21% improvement in toughness for the non-voided laminates. A model on the effect of voids within the Mode II stress state has also been proposed.  相似文献   

15.
This current work is concerned with the pretreatment of sugarcane bagasse (SCB) by mechanical activation (MA) using a self-designed stirring ball mill and surface modification of SCB using aluminate coupling agent (ACA). The untreated and differently treated SCBs were used to produce composites with poly(vinyl chloride) (PVC) as polymer matrix. The activation grade (Ag) measurement and Fourier transform infrared (FTIR) analysis of SCB showed that MA enhanced the condensation reaction between ACA and hydroxyl groups of the SCB fibres, which obviously increased the hydrophobicity of SCB. It was found that the mechanical properties of both the PVC composites reinforced by SCB with and without ACA modification increased with increasing milling time (tM). Scanning electron microscopy (SEM) analysis showed that MA pretreatment significantly improved the dispersion of SCB in the composites and interfacial adhesion between SCB and PVC matrix, resulting in better mechanical properties of the composites.  相似文献   

16.
Transparent colloidal ZnO quantum-dot (QD)/graphene nanocomposites were formed on poly(ethylene terephthalate) (PET) substrates. Ultraviolet (UV)–visible absorption spectra showed a shoulder peak around 350 nm corresponding to the absorption of ZnO QDs. Optical transmittance of the ZnO QD/graphene/PET multilayer was approximately 80%. High-resolution transmission electron microscopy images showed that the ZnO QDs were distributed along the circumferences of the surfaces on the graphene layers. Current–voltage and current–time measurements on the UV photodetector after bending at 300 K exhibited the ON/OFF switching states and stability resulting from the light-induced conductivity of the flexible graphene layer.  相似文献   

17.
Experimental investigations were conducted to characterize the fracture behaviours of Bisphenol A diglycidyl ether (DGEBA) epoxies modified with rigid nanoparticles (nanosilica or halloysite) and a reactive liquid carboxylterminated butadiene–acrylonitrile (CTBN) liquid rubber to identify toughening mechanisms and toughenability in the cured epoxies with different cross-linking densities. The epoxy was cured using three different hardeners, a heterocyclic amine (piperidine), a cycloaliphatic polyamine (Aradur 2954) and an aromatic amine [4,4′-Diaminodiphenyl sulfone (DDS)] to form nanocomposites with different cross-linking densities. It was found that both the hybrid particles, nanosilica with CTBN rubber and halloysite with CTBN rubber, were effective additives that clearly increased the fracture toughness of the three epoxy composites. In particular, the use of halloysite nanoparticles as additives for the epoxies showed greater potential than nanosilica to increase strength and modulus due to the reinforcing effect of the halloysite nanotubes (HNTs). The epoxy systems cured with the hardeners (Aradur 2954 and DDS), which generated relatively high cross-linking densities, evidenced inferior toughenability of the hybrid particles, compared with the epoxy systems cured using the hardener (piperidine), which produced lower cross-linking densities. The CTBN rubber formed dissimilar domains in different epoxy systems, features which were attributed to the different toughenability of the hybrid particles in the systems due to variations in the dominant toughening mechanisms involved.  相似文献   

18.
The graphene oxide sheets (GOs) reacted with 4,4′-diphenylmethane diisocyanate (MDI) and then stearic acid to form the functionalized graphene sheets (FGs), in order to improve their compatibility with isotactic polypropylene (iPP). The iPP incorporated with FGs were adequately mixed in a Haaker mixer and then compression molded to obtain the iPP/FGs nanocomposites. The crystallization, thermal stability and mechanical properties of the nanocomposites together with iPP/graphite sheets (Gs) and iPP/GOs composites were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The FGs achieved good dispersion with exfoliated and intercalated nanostructure and strong interfacial adhesion with iPP, which made the nanocomposites have a significant enhancement of thermal stability and mechanical properties at low FGs loadings.  相似文献   

19.
The mechanical properties of polyamide-6 (PA-6) electrospun nanofibrous mat samples were tested. With the aid of the previously developed modeling software the whole tensile process was analyzed. The structural changes under the tensile process were evaluated from the modeling results and also compared to scanning electron micrographs. It was found that above a critical stress value nanofibers are slipping on one another which plays an important role together the changes in the fiber orientation during the process. With the aid of the modeling software the tensile strength of single nanofibers under ideal axial stress and ideal gripping circumstances were estimated. It was found that single nanofibers have 48% higher tensile strength than the bulk PA-6 material has.  相似文献   

20.
Calcium doped CeO2 nanoparticles with doping concentrations between 0 and 50 mol% were synthesized by a co-precipitation method for ultraviolet filtration application. Below 20 mol% doping concentration, the samples were single-phase. From 30 mol%, CaCO3 appears as a secondary phase. The calculated CeO2 mean crystallite size was 9.3 nm for the pure and 5.7 nm for the 50 mol% Ca-doped sample. Between 250 and 330 nm, the absorbance increased for the 10, 30, and 40 mol% Ca-doped samples compared to the pure one. The band-gap was found to be 3.20 eV for the undoped, and between 3.36 and 3.51 eV for the doped samples. The blue shifts are attributed to the quantum confinement effect. X-ray photoelectron spectroscopy showed that the Ce3+ atomic concentration in the pure sample was higher than that of the 20 mol% Ca-doped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号