首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum sulfide electrode (La2S3) is prepared by a low cost, simple and room temperature chemical route for energy storage. The surface morphology of La2S3 film is revealed through field emission scanning electron microscopy. For the energy storage purpose, the pseudocapacitive behavior of La2S3 electrode is studied in 1 M aqueous Na2SO4 and 1 M KOH electrolytes. La2S3 electrode achieved maximum specific capacitance of 358 F g−1 at 5 mV s−1 scan rate with 78% electrochemical cyclic stability over 1000 cycles in 1 M Na2SO4 electrolyte. The galvanostatic charge–discharge study demonstrated the energy density of 35 Wh kg−1 at power density of 1.26 kW kg−1. The electrochemical impedance study showed field assisted charge transfer process with relaxation time of 32 ms in 1 M Na2SO4 electrolyte ensuring fast redox reaction.  相似文献   

2.
The present paper deals with synthesis of samarium telluride (Sm2Te3) thin films using simple and low cost successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. The Sm2Te3 thin films are characterized by X-ray diffraction (XRD) for structural determination, energy dispersive analysis of X-ray (EDAX) for elemental composition, field emission scanning electron microscopy (FE-SEM) for surface morphological study and contact angle measurement for wettability study. The Sm2Te3 exhibits orthorhombic crystal structure with cloud like surface morphology. The film surface showed lyophilic behavior with contact angle of 5.7° for propylene carbonate (PC). Further, electrochemical measurements are carried out in LiClO4–PC electrolyte using cyclic voltammetry (CV), galvanostatic charge discharge and electrochemical impedance spectroscopy (EIS) techniques. The Sm2Te3 film showed maximum specific capacitance and energy density of 144 F g−1 and 10 W h kg−1 respectively. The EIS study showed negligible change in resistive parameters after 1000 electrochemical cycles.  相似文献   

3.
Manganese indium sulphide (MnIn2S4) thin films were deposited using an aqueous solution of MnCl2, InCl3 and (NH2)2CS in the molar ratio 1:2:4 by simple chemical spray pyrolysis technique. The thin film substrates were annealed in the temperature range between 250 and 350 °C to study their various physical properties. The structural properties as studied by X-ray diffraction showed that MnIn2S4 thin films have cubic spinel structure. The formation of cube and needle shaped grains was clearly observed from FE-SEM analysis. The energy dispersive spectrum (EDS) predicts the presence of Mn, In and S in the synthesized thin film. From the optical studies, it is analyzed that the maximum absorption co-efficient is in the order between 104 and 105 cm−1 and the maximum transmittance (75%) was noted in the visible and infrared regions. It is noted that, the band gap energy decreases (from 3.20 to 2.77 eV) with an increase of substrate temperature (from 250 to 350 °C). The observations from photoluminescence studies confirm the emission of blue, green, yellow and red bands which corresponds to the wavelength range 370–680 nm. Moreover, from the electrical studies, it is observed that, as the substrate temperature increases the conductivity also increases in the range 0.29–0.41×10−4 Ω−1 m−1. This confirms the highly semiconducting nature of the film. The thickness of the films was also measured and the values ranged between 537 nm (250 °C) to 483 nm (350 °C). This indicates that, as the substrate temperature increases, the thickness of the film decreases. From the present study, it is reported that the MnIn2S4 thin films are polycrystalline in nature and can be used as a suitable ternary semiconductor material for photovoltaic applications.  相似文献   

4.
Flexible and wearable energy storage devices are strongly demanded to power smart textiles. Herein, reduced graphene oxide (RGO) and polypyrrole (PPy) were deposited on cotton fabric via thermal reduction of GO and chemical polymerization of pyrrole to prepare textile-based electrodes for supercapacitor application. The obtained PPy–RGO-fabric retained good flexibility of textile and was highly conductive, with the conductivity of 1.2 S cm−1. The PPy–RGO-fabric supercapacitor showed a specific capacitance of 336 F g−1 and an energy density of 21.1 Wh kg−1 at a current density of 0.6 mA cm−2. The RGO sheets served as conductor and framework under the PPy layer, which could facilitate electron transfer between RGO and PPy and restrict the swelling and shrinking of PPy, thus resulting in improved electrochemical properties respect to the PPy-fabric device.  相似文献   

5.
Poly(3,4-ethylenedioxythiophene)–tosylate–polyethylene glycol–polypropylene glycol–polyethylene glycol (PEDOT–Tos–PPP) films were prepared via a vapor phase polymerization (VPP) method. The films possess good electrical conductivity (1550 S cm−1), low Seebeck coefficient (14.9 μV K−1) and thermal conductivity (0.501 W m−1 K−1), and ZT  0.02 at room temperature (RT, 295 K). Then, the films were treated with NaBH4/DMSO solutions of different NaBH4 concentrations to adjust the redox level. After the NaBH4/DMSO treatment (dedoping), the electrical conductivity of the films continuously decreased from 1550 to 5.7 S cm−1, whereas the Seebeck coefficient steeply increased from 14.9 to 143.5 μV K−1. A maximum power factor of 98.1 μW m−1 K−2 has been achieved at an optimum redox level. In addition, the thermal conductivity of the PEDOT–Tos–PPP films decrease from 0.501 to 0.451 W m−1 K−1 after treated with 0.04% NaBH4/DMSO solution. A maximum ZT value of 0.064 has been achieved at RT. The electrical conductivity and thermal conductivity (Seebeck coefficient) of the untreated and 0.04% NaBH4/DMSO treated PEDOT–Tos–PPP films decrease (increases) with increasing temperature from 295 to 385 K. And the power factor of the films monotonically increases with temperature. The ZT at 385 K of the 0.04% NaBH4/DMSO treated film is 0.155.  相似文献   

6.
The new layered niobate Cu0.5Nb3O8 is synthesized by soft chemistry in aqueous electrolyte via Cu2+→H+ exchange between copper nitrate and HNb3O8·H2O. The characterization of the exchanged product is made by means of thermal gravimetry, chemical analysis, X-ray diffraction and IR spectroscopy. Thermal analysis shows a conversion to anhydrous compound above 500 °C. The oxide displays a semiconductor like behavior; the thermal variation of the conductivity shows that d electrons are strongly localized and the conduction is thermally activated with activation energy of 0.13 eV. The temperature dependence of the thermopower is indicative of an extrinsic conductivity; the electrons are dominant carriers in conformity with an anodic photocurrent. Indeed, the Mott–Schottky plot confirms n-type conduction from which a flat band potential of −0.82 VSCE, an electronic density of 8.72×1019 m−3 and a depletion width of 4.4 nm are determined. The upper valence band, located at ~5.8 eV below vacuum is made up predominantly of Cu2+: 3d with a small admixture of O2−: 2p orbitals whereas the conduction band consists of empty Nb5+: 5s level. The energy band diagram shows the feasibility of the oxide for the photocatalytic hydrogen production upon visible light (29 mW cm−2) with a rate evolution of 0.31 mL g−1 min−1.  相似文献   

7.
Wearable energy storage devices that can be used in the garment industry are strongly required to power E-textiles. In this article, polypyrrole (PPy) nanorods were deposited on cotton fabrics via in situ polymerization of pyrrole in the presence of the fibrillar complex of FeCl3 and methyl orange as a reactive self-degraded template. The obtained fabrics could be directly used as supercapacitor electrodes, with a maximum specific capacitance of 325 F g−1 and an energy density of 24.7 Wh kg−1 at a current density of 0.6 mA cm−2. The capacitance remained higher than 200 F g−1 after 500 cycles.  相似文献   

8.
In the present communication, the binary CdSe and quaternary Cd1-xZnxSe1-ySy (0 ≤ x = y ≤ 0.35) thin films were synthesized using a chemical bath deposition. Thin film deposition was carried out at the optimized conditions (pH = 10 ± 0.1, deposition temperature = 70 ± 0.1 °C, deposition time = 100 min and substrate rotation speed = 65 ± 2 rpm). X-ray diffraction studies confirmed hexagonal-wurtzite crystal structure with the formation of quaternary Cd(Zn, S)Se phase along with binary CdSe, CdS, ZnS and ZnSe, phases of the as-grown Cd1-xZnxSe1-ySy thin films. Elemental analysis showed presence of Cd2+, Zn2+, S2- and Se2- in the deposited films. Fourier transform infrared spectroscopy shown the bands at 911.15 cm−1 – 901.62 cm−1 which are assigned to the stretching frequency of Cd–Se bond. Scanning electron microscopy show transformation of the microstructure from globular crystallites to a rhomboid flake like network. The electrical conductivity was typically ≈ 10−7 Ω1 cm−1. At low temperatures, the conduction was by variable range hopping, and this changed to thermally activated grain boundary dominated conduction for T > 350 K.  相似文献   

9.
《Microelectronics Reliability》2015,55(11):2174-2177
A PVDF-HFP gel electrolytes based DSSCs were fabricated successfully, where gel electrolytes with 2.5 wt.%, 5 wt.%, 10 wt.% and 15 wt.% PVDF-HFP are included, respectively. Linear sweep voltammetry (LSV), photocurrent–voltage measurements and electrochemical impedance spectra (EIS) were measured. As the results shown, the apparent diffusion coefficient (Dapp) of I and I3 decreased as PVDF-HFP increased. Dapp of I and I3 are decreased from 1.87 × 10 6 to 0.67 × 10 6 cm2/s and 3.28 × 10 6 to 0.88 × 10 6 cm2/s, respectively. For the solar cell measurements, the short circuit current density (Jsc) were affected by the ion motilities, which was decreased from 11.58 mA/cm2 to 8.17 mA/cm2, and the energy converting efficiency (η %) was decreased from 5.17% to 2.79%. For electrochemical impedance spectra (EIS) measurements, the ionic diffusion impedance for the redox-couple (I/I3) in the gel electrolyte was also increased with the concentration of PVDF-HFP from 0.61 Ω to 8.17 Ω. In the Bode Plots, the electron lifetime (τe) of the 2.5 wt.% and 5 wt.% PVDF-HFP electrolytes was increased from 40.52 ms to 48.48 ms and 41.29 ms, respectively. However, τe was decreased in the concentrations of 10 wt.% and 15 wt.% PVDF-HFP, due to the ion motilities that were decreased by excessing PVDF-HFP polymer. For gel electrolyte, the cell of 2.5 wt.% PVDF-HFP exhibited a better JSC of 10.89 mA/cm2, a higher energy conversion efficiency (η) of 4.75%, a higher fill factor (FF) of 61.26%, and a smaller R of 1.06 Ω than the 15 wt.% PVDF-HFP based cell.  相似文献   

10.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

11.
Thin film of silver tin sulfides (Ag–Sn–S) has been deposited on indium tin oxide coated glass (ITO) substrates using potentiostatic cathodic electrodeposition technique. New procedure for the growth of Ag–Sn–S film is presented. An electrolyte solution containing Silver Nitrate (AgNO3), Tin(II) Chloride (SnCl2) and Sodium Thiosulfate (Na2S2O3)in acidic solution (pH ~2) and at temperature of the bath 55 °C were used for the growth of Ag–Sn–S thin film. Prior to the deposition, a cyclic voltammetry technique was performed in binary (Ag–S, Sn–S) and ternary (Ag–Sn–S) systems. This study was carried out to examine the behavior of electroactive species at the electrode surface. Based on these results, the cathodic applied potential was fixed at −1000 mV versus Ag/AgCl to obtain a uniform and good adhesion of ternary thin film. After that, structural, morphological and optical performances of films have been investigated. The X-ray diffraction patterns of the samples demonstrate the presence of the orthorhombic phase of Ag8SnS6 at applied potential of −1000 mV versus Ag/AgCl. Based on the scanning electron microscopy (SEM), it was found that the surface morphology and grain size were strongly influenced by the presence of Sn and/or Ag in the electrolyte bath. The band gaps of binaries and ternary compound are evaluated from optical absorption measurements. Band gap of Ag8SnS6 determined from transmittance spectra is in the range 1.56 eV. Flat-band potential and free carrier concentration have been determined from Mott–Schottky plot and are estimated to be around 0.18 V and 2.21×1014 cm−3 respectively. The photoelectrochemical test of Ag8SnS6 was studied and the experimental observations are discussed in detail.  相似文献   

12.
Fluorine-doped tin oxide (FTO) films were prepared by an improved sol-gel process, in which FTO films were deposited on glass substrates using evaporation method, with the precursors prepared by the conventional sol-gel method. The coating and sintering processes were combined in the evaporation method, with the advantage of reduced probability of films cracking and simplified preparation process. The effects of F-doping contents and structure of films on properties of films were analyzed. The results showed the performance index (ΦTC=3.535×10−3 Ω−1 cm) of the film was maximum with surface resistance (Rsh) of 14.7 Ω cm−1, average transmittance (T) of 74.4% when F/Sn=14 mol%, the reaction temperature of the sol was 50 °C, and the evaporation temperature was 600 °C in muffle furnace, and the film has densification pyramid morphology and SnO2−xFx polycrystalline structure with tetragonal rutile phase. Compared with the commercial FTO films (ΦTC=3.9×10−3 Ω−1 cm, Rsh=27.4 Ω cm−1, T=80%) produced by chemical vapor deposition (CVD) method, the ΦTC value of FTO films prepared by an improved sol-gel process is close to them, the electrical properties are higher, and the optical properties are lower.  相似文献   

13.
In this paper, S-doped ZnO (SxZnO) was prepared using sol-gel method at different S amounts. The structural, optical and transport properties were investigated. The introduction of S atoms into the ZnO network was found to lower the crystallization level which results in reducing the crystallite size up to x=0.3. The doping process is confirmed by the observed peak at ~610 cm−1 in the ATR spectrum related to the Zn-S linking. EDX mapping shows a homogeneous distribution of S atoms on the particles surface. The best compromise between the band gap (Eg=2.96 eV), the charge carriers (NA=2.139×1022 cm−3), the conductivity (σ=5.56×10−4 Ω−1 m−1) and the mobility (µ=16.26×10−14 m2 V−1 s−1) is obtained for x=0.1. The conduction mechanism is assumed by small hopping polaron. The S-doping has impacted positively the photocatalytic activity of ZnO, with particularly high performance for S0.2ZnO.  相似文献   

14.
Potential application of amorphous silicon nitride (a-Si3N4)/silicon oxy-nitride (SiON) film has been demonstrated as resistive non-volatile memory (NVM) device by studying the Al/Si3N4/SiON/p-Si metal–insulator–semiconductor (MIS) structure. The existence of several deep trap states was revealed by the photoluminescence characterizations. The bipolar resistive switching operation of this device was investigated by current–voltage measurements whereas the trap charge effect was studied in detail by hysteresis behavior of frequency dependent capacitance–voltage characteristics. A memory window of 4.6 V was found with the interface trap density being 6.4 × 1011 cm−2 eV−1. Excellent charge retention characteristics have been observed for the said MIS structure enabling it to be used as a reliable non-volatile resistive memory device.  相似文献   

15.
《Solid-state electronics》2006,50(7-8):1355-1358
The electrical properties of Cr/Pt/Au and Ni/Au ohmic contacts with unintentionally doped In2O3 (U-In2O3) film and zinc-doped In2O3 (In2O3:Zn) prepared by reactive magnetron sputtering deposition are described. The lowest specific contact resistance of Cr/Pt/Au and Ni/Au is 2.94 × 10−6 and 1.49 × 10−2 Ω-cm2, respectively, as determined by the transmission line model (TLM) after heat treatment at 300 °C by thermal annealing for 10 min in nitrogen ambient. The indium oxide diodes have an ideality factor of 1.1 and a soft breakdown voltage of 5 V. The reverse leakage current prior to breakdown is around 10−5 A.  相似文献   

16.
Fluorine doped tin oxide (FTO) films were fabricated on a glass substrate by a green sol–gel dip-coating process. Non-toxic SnF2 was used as fluorine source to replace toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated using X-ray diffraction, Hall effect measurements, and UV–vis spectra. Structural analysis revealed that the films are polycrystalline with a tetragonal crystal structure. Grain size varies from 43 to 21 nm with increasing fluorine concentration, which in fact critically impacts resultant electrical and optical properties. The 500 °C-annealed FTO film containing 6 mol% SnF2 shows the lowest electrical resistivity 7.0×10−4 Ω cm, carrier concentration 1.1×1021 cm−3, Hall mobility 8.1 cm2V−1 s−1, optical transmittance 90.1% and optical band-gap 3.91 eV. The 6 mol% SnF2 added film has the highest figure of merit 2.43×10−2 Ω−1 which is four times higher than that of un-doped FTO films. Because of the promising electrical and optical properties, F-doped thin films prepared by this green process are well-suited for use in all aspects of transparent conducting oxide.  相似文献   

17.
Nanocrystalline ZnO was synthesized from zinc (II) acetate/oxalate mixture using a facile sol–gel synthesis and is characterized by techniques such as powder XRD, FTIR and Raman spectroscopy, TEM and SEM. The TEM and SEM study showed that the nanocrystalline ZnO powder and film have an average particle size of 25 nm. This material has been successfully applied as photoanodes in dye sensitized solar cells (DSCs) constructed with standard N719 dye and conventional iodide/triiodide (I/I3) electrolytes. A systematic investigation of the performance of DSCs with film thickness and dyeing time had also been carried out. Among the five different film thicknesses 4, 8, 12, 16 and 20 μm prepared, the best result was obtained for the film thickness of 16 μm for 2 h dying showing an efficiency of 2.2% with a JSC of 4.7 mA cm−2 and a very high fill factor of >73%.  相似文献   

18.
In2S3 thin films were grown by the chemical spray pyrolysis (CSP) method using indium chloride and thiourea as precursors at a molar ratio of S:In=2.5. The deposition was carried out at 350 °C on quartz substrates. The film thickness is about 1 µm. The films were then annealed for 2 h at 550, 600, 650 and 700 °C in oxygen flow. This process allows the transformation of nanocrystal In2O3 from In2S3 and the reaction is complete at 600 °C. X-ray diffraction spectra show that In2O3 films are polycrystalline with a cubic phase and preferentially oriented towards (222). The film grain size increases from 19 to 25 nm and RMS values increase from 9 to 30 nm. In2O3 films exhibit transparency over 70–85% in the visible and infrared regions due to the thickness and crystalline properties of the films. The optical band gap is found to vary in the range 3.87–3.95 eV for direct transitions. Hall effect measurements at room temperature show that resistivity is decreased from 117 to 27 Ω cm. A carrier concentration of 1×1016 cm?3 and mobility of about 117 cm2 V?1 s?1 are obtained at 700 °C.  相似文献   

19.
New heterostructure of CdO-ZnO nanoparticles intercalated on PANI matrix (CZP) have been synthesized by two step solution route: firstly, CdO-ZnO heterostructure was prepared by the simple chemical precipitation method and the resulting materials are effectively coupled on PANI by the chemical oxidative polymerization method in acidic medium using APS as oxidant. The resulting respective hybrid materials of CdO, ZnO and PANI matrix were characterized and confirmed (functional groups and crystalline nature) by FTIR, RAMAN and XRD analysis. From the HR-SEM analysis, hybrid materials of CdO-ZnO/PANI matrix has agglomerated hexagonal structure was derived from the granular structure of PANI. Thermo gravimetric analysis showed that CZP hybrid composite has higher thermal stability than ZnO-PANI and PANI matrix. Surface area and pore volume of the hybrid heterostructure obtained to be 54.52 m2/g and 0.14 cm3/g respectively. The electrical properties of CdO-ZnO particles intercalated on PANI matrix are evaluated in three different electrolyte solutions. In the sense, 1 M H2SO4 electrolyte solution exhibits better current response than the other electrolyte solution. From the results shows that the hybrid hetero structure of (CZP) exhibited better thermal and electrochemical performances than ZnO-PANI hybrid and the capacitance retention showing 72.6% after 500 cycles at a current density of 0.5 mA g−1, thus the electrode materials possess good specific capacitance and cycle stability. Hence the CZP is a promising material in the field of super capacitor applications.  相似文献   

20.
We report on fabrication of CuxFe1−xS2 (CFS) thin films using chemical spray pyrolysis followed by post-sulfurization. Post-sulfurized CFS films were grown with compact and good crystalline texture. The sulfur stoichiometry in CFS films was found to be crucial for determination of its crystal structure. The sulfur deficient CFS films were driven to chalcopyrite CFS (CH-CFS) structure whereas the sulfur cured CFS films were grown with Cu-incorporated pyrite CFS (P-CFS) structure which was confirmed by X-ray diffraction and Raman spectroscopy analysis along with UV–vis spectroscopy measurement. Electrical characterizations of both types of CFS films revealed p-type conductivity with carrier concentration in the range of 1018–1020 cm−3 and mobility of 0.5–9 cm2 V−1 s−1. The band gaps of CFS films of CH-CFS structure (0.885–0.949 eV) were found to be less than that of P-CFS structure (0.966–1.156 eV), which indicates its potential application for thermoelectric and photovoltaic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号