首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Fracture characterization under mode II loading of a hybrid laminate composed by a unidirectional carbon fiber-epoxy composite and cork was performed using the End Notched Flexure test. A data reduction scheme based on equivalent crack length concept, specimen compliance and Timoshenko beam theory was applied to evaluate fracture toughness under mode II loading of a composed beam (cork and carbon-epoxy composite). The adopted procedure depends exclusively on the data issuing from load–displacement (P–δ) curve and does not require crack length monitoring during the test which is a difficult task to be accomplished with the necessary accuracy in the ENF test. A numerical analysis using cohesive zone modeling and an inverse procedure was performed to assess the mode II cohesive law that simulates the material fracture under shear loading. It was concluded that hybridization is advantageous relative to monolithic carbon-epoxy laminate in which concerns the observed failure mode, which altered from typically brittle to very ductile thus contributing to avoid sudden shear failures in real applications.  相似文献   

2.
A new concept consisting of binding and ex situ toughening is proposed for manufacturing and toughening of textile reinforced pCBT composites. The present study assesses the influence of various preforming binders on interlaminar fracture properties. Interlaminar fracture toughness of textile reinforced pCBT composites was investigated under mode I and mode II deformation. A standard double cantilever beam (DCB) test and an end notched flexure (ENF) test based on a three-point bending test were applied to evaluate the interlaminar fracture toughness in mode I and mode II, respectively. The effect of binder type, filling content and preparation concept on fracture properties under the mentioned two deformation modes were discussed on the basis of morphology analysis of fracture sections with scanning electric microscopy. Flexural properties of the textile reinforced pCBT laminates prepared using the selected preforming binder were characterized for further verification of the performance of the proposed concept.  相似文献   

3.
The compressive failure of multidirectional carbon fibre-reinforced composites is investigated in this paper. Cross-ply and multidirectional compact compression IM7/8552 specimens were tested to deduce the failure mechanisms that occurred during compressive loading. The experimental results and the subsequent fractographic analysis revealed that the stacking sequence had a significant effect on the performance of multidirectional composites under compression. Delamination and in-plane shear fracture were the dominant failure mechanisms both in cross-ply and multidirectional configurations. While multidirectional configurations exhibited a stiffer response and higher failure load compared to cross-ply configurations, they were also more prone to delaminations and post-failure damage. Multidirectional laminates also exhibited significantly more complex fracture morphologies, which made the failure process interpretation more difficult. The sequence of events that lead to global fracture in multidirectional fibre-reinforced composites is presented.  相似文献   

4.
In this paper, the hybridisation of multidirectional carbon fibre-reinforced composites as a means of improving the compressive performance is studied. The aim is to thoroughly investigate how hybridisation influences the laminate behaviour under different compression conditions and thus provide an explanation of the “hybrid effect”. The chosen approach was to compare the compressive performance of two monolithic carbon fibre/epoxy systems, CYTEC HTS/MTM44-1 and IMS/MTM44-1, with that of their respective hybrids. This was done by keeping the same layup throughout ((0/90/45/−45)2S) while replacing the angle plies in one case or the orthogonal plies in the other case with the second material, thus producing two hybrid systems. To investigate the compressive performance of these configurations, compact and plain compression test methods were employed which also allowed studying the sensitivity of compressive failure to specimen geometry and loading conditions. The experimental results and the subsequent fractographic analysis revealed that the hybridisation of selective ply interfaces influenced the location and severity of the failure mechanisms. Finally, in light of this knowledge, an update of the generic sequence of events, previously suggested by the authors, which lead to global fracture in multidirectional fibre-reinforced composites under compression is presented.  相似文献   

5.
In this paper, flexural loading of woven carbon fabric-reinforced polymer laminates is studied using a combination of experimental material characterisation, microscopic damage analysis and numerical simulations. Mechanical behaviour of these materials was quantified by carrying out tensile and large-deflection bending tests. A substantial difference was found between the materials' tensile and flexural properties due to a size effect and stress stiffening of thin laminates. A digital image-correlation technique capable of full-field strain-measurement was used to determine in-plane shear properties of the studied materials. Optical microscopy and micro-computed tomography were employed to investigate deformation and damage mechanisms in the specimens fractured in bending. Various damage modes such as matrix cracking, delaminations, tow debonding and fibre fracture were observed in these microstructural studies. A two-dimensional finite-element (FE) model was developed to analyse the onset and propagation of inter-ply delamination and intra-ply fabric fracture as well as their coupling in the fractured specimen. The developed FE model provided a correct prediction of the material's flexural response and successfully simulated the sequence and interaction of damage modes observed experimentally.  相似文献   

6.
A quasi-isotropic CFRP laminate, containing a notch or circular hole, is subjected to combined tension and shear, or compression. The measured failure strengths of the specimens are used to construct failure envelopes in stress space. Three competing failure mechanisms are observed, and for each mechanism splitting within the critical ply reduces the stress concentration from the hole or notch: (i) a tension-dominated mode, with laminate failure dictated by tensile failure of the 0° plies, (ii) a shear-dominated mode entailing microbuckling of the −45° plies, and (iii) microbuckling of the 0° plies under remote compression. The net section strength (for all stress states investigated) is greater for specimens with a notch than a circular hole, and this is associated with greater split development in the load-bearing plies. The paper contributes to the literature by reporting sub-critical damage modes and failure envelopes under multi-axial loading for two types of stress raiser.  相似文献   

7.
8.
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2 mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.  相似文献   

9.
A new critical plane-based mixed-mode delamination failure criterion is proposed in this study. First, many existing models are reviewed and their capability to handle the mixed-mode fracture of general anisotropic materials are discussed. Following this, a previously developed critical plane approach is extended to analyze the interfacial fracture of composite materials by considering the anisotropic fracture resistance under mixed-mode loadings. Next, comparison with extensive experimental data available in the literature is performed to demonstrate the validity of the proposed criterion. A general good agreement is observed between the model's predictions and experimental observations. Finally, some conclusions and future work are drawn based on the proposed study.  相似文献   

10.
Composite materials are often subjected to mechanical impact causing delamination. For quasi-static loading, measuring the mode I fracture toughness has been standardized. However, for high-rate loading, additional challenges arise. Consequently, no standard test has yet been defined for measuring the mode I fracture toughness under high rates of loading. This article therefore reviews candidate tests for measuring the high-rate mode I fracture toughness. Strength and weaknesses of different specimen designs and test setups are shown. Different approaches to measuring crack growth and loads are presented. The different approaches are compared and recommendations are provided for measuring the mode I fracture toughness of composites under high rates of loading.  相似文献   

11.
Polyetherketone cardo (PEK-C) nanofibres were produced by an electrospinning technique and directly deposited on carbon fabric to improve the interlaminar fracture toughness of carbon/epoxy composites. The influences of nanofibre diameter and interlayer thickness on the Mode I delamination fracture toughness, flexure property and thermal mechanical properties of the resultant composites were examined. Considerably enhanced interlaminar fracture toughness has been achieved by interleaving PEK-C nanofibres with the weight loading as low as 0.4% (based on weight of the composite). Finer nanofibres result in more stable crack propagation and better mechanical performance under flexure loading. Composites modified by finer nanofibres maintained the glass transition temperature (Tg) of the cured resin. Increasing nanofibre interlayer thickness improved the fracture toughness but compromised the flexure performance. The Tg of the cured resin deteriorated after the thickness increased to a certain extent.  相似文献   

12.
The accurate prediction of failure of sandwich structures using cohesive mixed-mode damage models depends on the accurate characterization of the cohesive laws under pure mode loading. In this work, a numerical and experimental study on the asymmetric double cantilever beam (DCB) sandwich specimen is presented with the objective to characterize the debonding fracture between the face sheet and the core under pure mode I. A data reduction method based on beam theory was formulated in such a way to incorporate the complex damaging phenomena of the debonding due to the material and geometric asymmetry of the specimen, via the consideration of an equivalent crack length (ae). Experimental DCB tests were performed and the proposed methodology was followed to obtain the debonding fracture energy (GIc). The experimental tests were numerically simulated and a cohesive damage model was employed to reproduce crack propagation. An inverse method was followed to obtain the local cohesive strength (σu,I) based on the fitting of the numerical and experimental load–displacement curves. With the value of fracture energy and cohesive strength defined, the cohesive law for interface mode I fracture is characterized. Good agreement between the numerical and the experimental R-curves validates the accuracy of the proposed data reduction procedure.  相似文献   

13.
Investigations on the fracture properties of wood in relation to its microstructure are reported. The inhomogeneous and hierarchical structure of wood is addressed. Wood species, the influence of orientation, the role of structural features, like rays are considered and discussed. Likewise the mode of loading, which determines the mode of fracturing, and the influence of humidity have been studied by using new fracture mechanical techniques and ways of evaluation. The specific fracture energy has been determined under crack opening conditions. In-situ loading in an environmental scanning electron microscope (ESEM), which allows observation in moistured condition, has been performed in order to investigate the mechanisms of fracturing of wood on a sub-microscopic scale. In the nanometer range, especially the influence of the microfibril angle on deformation and fracture behaviour has been studied.  相似文献   

14.
The current paper is concerned with modelling damage and fracture in woven fabric composite double-lap bolted joints that fail by net-tension. A 3-D finite element model is used, which incorporates bolt clamp-up, to model a range of CFRP bolted joints, which were also tested experimentally. The effects of laminate lay-up, joint geometry, hole size and bolt clamp-up torque were considered. An Extended Finite Element (XFEM) approach is used to simulate damage growth, with traction–separation parameters that are based on previously reported, independent experimental measurements for the strength and toughness of the woven fabric materials under investigation. Good agreement between the predicted and measured bearing stress at failure was obtained.  相似文献   

15.
Single-lap shear behaviour of carbon–epoxy composite bolted aircraft fuselage joints at quasi-static and dynamic (5 m/s and 10 m/s) loading speeds is studied experimentally. Single and multi-bolt joints with countersunk fasteners were tested. The initial joint failure mode was bearing, while final failure was either due to fastener pull-through or fastener fracture at a thread. Much less hole bearing damage, and hence energy absorption, occurred when the fastener(s) fractured at a thread, which occurred most frequently in thick joints and in quasi-static tests. Fastener failure thus requires special consideration in designing crashworthy fastened composite structures; if it can be delayed, energy absorption is greater. A correlation between energy absorption in multi-bolt and single-bolt joint tests indicates potential to downsize future test programmes. Tapering a thin fuselage panel layup to a thicker layup at the countersunk hole proved highly effective in achieving satisfactory joint strength and energy absorption.  相似文献   

16.
This research investigates the fracture energy of ultra-high performance fiber reinforced concretes (UHP-FRC) under direct tensile loading applied at relatively low strain rates. Nine UHP-FRC series incorporating three types of steel fibers (straight, end-hooked, and twisted fibers), each in three different fiber volume fractions, are tested under uniaxial tensile loading at four different strain rates, ranging from 0.0001 s−1 to 0.1 s−1. Particular attention is given to clearly distinguish between the dissipated energy during the strain hardening and softening portions of the loading regime. The test results show that: 1) the fracture energy is mainly influenced by a parameter, termed fiber factor, which is a function of the fiber volume fraction and slenderness, and 2) all three types of UHP-FRCs exhibit increases in fracture energy with increasing strain rates. The observed strain rate sensitivity of the fracture energy suggests it is likely associated with the strain sensitive micro-cracking that occurs during fiber pull-out.  相似文献   

17.
Steel fibres were used to reinforce the layered targets with surface-to-surface combination. The two- and three-layer metal targets with a total thickness of 5 mm were fabricated by explosive welding. The damage mechanism and the anti-penetration performance of the targets were studied experimentally and numerically using the LS-DYNA 3D finite element code. The effects of layer number and fibre spacing density on the anti-penetration performance were discussed. The results show that the failure modes of the steel front plate were shearing and plugging, and that the failure mode of the aluminium rear plate was ductile prolonging deformation when the tied interface failed by tension (or shearing and plugging when the interface remained connected) for the two-layer target. For the three-layer target, the failure modes of the steel front plate and the aluminium middle plate were shearing and plugging, while the steel rear plate failed by ductile prolonging deformation. At the same time, the steel-fibres failed by bending and tensile deformation. The anti-penetration performance of the three-layer composite targets was better compared with the performance of the two-layer targets when the areal density and fibre spacing density were equal. The reinforced fibres will improve the anti-penetration performance of the targets, and the ballistic resistance decreased with an increase in the fibre spacing distance.  相似文献   

18.
Time-resolved small-angle X-ray scattering (SAXS) measurements have been conducted during tensile deformation of carbon nanotube (CNT)/amorphous poly(ethylene terephthalate) (PET) composite films using synchrotron radiation in order to investigate the fracture process. The observed SAXS patterns consisted of the streaks parallel to the loading direction caused by the total reflection at craze/polymer interfaces, the streaks perpendicular to the loading direction caused by the fibril/void structure of crazes and the scattering from CNTs. The formation, widening and fracture processes of the crazes were investigated based on the changes of SAXS patterns during deformation and the fracture toughness of the composite films determined with essential work of fracture method. The influences of CNT addition on the mechanical properties of PET varied depending on the specimen geometries used for the mechanical tests and marked influences were obtained with surface-notched specimens. The CNT addition increased the energy needed to widen the crazes and retarded the growth and fracture of the crazes during deformation. This lead to the increases in the plastic work of fracture and the fracture toughness of PET. The CNT aggregates formed at the CNT fraction beyond 3 wt%, however, caused reduction of the fracture toughness.  相似文献   

19.
A generalized Irwin model is proposed to investigate elastic–plastic fracture behavior of a bi-layered composite plate with a sub-interface crack under combined tension and shear loading. The dependence of the stress intensity factors, the plastic zone size, the effective stress intensity factor and the crack tip opening displacement on the crack depth h, the Dundurs’ parameters and the phase angle θ is discussed in detail. Numerical results show that in most cases, if the crack is embedded in a stiffer material, when the crack is close to the interface, the plastic zone size and the crack tip opening displacement will increase. On the contrary, if the crack is embedded in a softer material, when the crack is close to the interface, the plastic zone size and the crack tip opening displacement will decrease.  相似文献   

20.
This paper explores the efficacy of polyethylene-co-ethacrylic acid (EMAA), as a thermally activated thermoplastic healing agent embedded within a carbon fibre reinforced epoxy composite. EMAA fibres have been shown to effectively restore mode I properties in a fibre reinforced composite after thermal activation yet other forms of the healing agent or modes of deformation have so far not been studied at all. This work, uses EMAA in the form of a non-woven mesh, rather than a woven fabric to study the healing mechanism and effectiveness of property restoration for mode I (crack opening) and mode II (shear) failure as well as for high speed impact. Property restoration after mode I damage was found to be over 200% and increased with increasing EMAA concentration. For mode II shear failure, the property restoration was reduced to a little over 100% regardless of EMAA concentration. Mode II analysis also showed that the modulus could be restored to about 80% of its original value when modified with EMAA. Repeated impacting using a falling weight test produced no property restoration after healing, yet the modified laminates appeared protected from further damage compared with an unmodified laminate. This was attributed to the formation of a ductile thermoplastic layer mitigating further damage. Scanning electron microscopy revealed that regardless of the extent of healing, the form of the healing agent or the mode of damage, the unique pressure delivery mechanism previously identified, was always observed to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号