首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题。在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%。实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考。  相似文献   

2.
单阶段目标检测网络YOLOv5在处理热轧带钢表面缺陷的特征提取与感受特征融合时存在一定不足。文章提出一种适用于热轧带钢表面缺陷检测的优化YOLOv5算法,该算法通过IOUK-means++算法调整Anchor聚类锚框设定,并增加Dynamic Head目标检测头,引入通道注意力机制(C3_CA),同时结合Hard Swish激活函数与WIoU_Loss边界框回归函数,有效提高热轧带钢表面缺陷检测的综合精度。由NEU-DET数据集测试结果表明,相较于单阶段YOLOv5算法融合结果,优化后的YOLOv5网络模型的均值平均精度(mAP)可提高至75.7%,且网络约束率可有效提升6.1%。上述优化YOLOv5算法对热轧带钢表面缺陷位置勘定、分类指向与影响评估具有有益参考,同时也为金属表面的高精度筛检提供重要支持。  相似文献   

3.
针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。  相似文献   

4.
5.
传统的金属表面缺陷检测是通过人工目测完成的,由于人工目测方法存在效率低下、漏检率高、劳动强度大等缺点,难以满足金属表面缺陷检测的效率和精度要求。针对工业生产过程中金属表面的小缺陷人工检测效率低等问题,提出了一种基于改进的YOLOv7算法的金属表面小缺陷检测方法。首先,建立了包含5种金属表面小缺陷的数据集;然后,设计了扩散卷积,利用步长改变了卷积核中特征点的间距,扩大了卷积层的感受野;设计了方向注意力模块,通过分割输入特征图,在水平方向和垂直方向上进行了特征提取,在通道维度上引入了注意力机制,根据通道的权重,完成了对输出通道数目的重新调整,增强了YOLOv7对小缺陷的位置感知;最后,研究了不同算法在金属表面小缺陷数据集上的目标检测结果,设计了消融实验,对改进策略进行了性能分析。研究结果表明:在相同训练策略下,与传统的YOLOv7算法模型相比,改进后的YOLOv7算法对小缺陷的检测效率为91 fps,平均检测精度为88.0%,较原模型提高了3.6%。在实际生产中可以采用该方法精确检测复杂背景下的金属表面小缺陷。  相似文献   

6.
针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)中,将普通卷积重构为逐通道卷积和逐点卷积的形式,有效减少了网络中的冗余参数;为进一步降低模型参数量,使用MobileNetv3作为特征提取网络。在减少参数量的同时,2种轻量化改进方法有效提高了模型的检测速度;在轻量化后的路径聚合网络(Path Aggregation Network, PANet)中加入卷积注意力模块(Convolutional Block Attention Module, CBAM),通过仅引入少量的参数来提高轻量化网络的损伤检测精度。实验结果表明,改进YOLOv4算法的平均精度均值(mean Average Precision, mAP)为89.82%,模型大小为73.29 MB,检测速度为37.3 FPS。与YOLOv4目标检测算法相比,改进YOLOv4算法以3.55%的mAP损失,使模型参数量降低了约2/3,检测速度提高了1....  相似文献   

7.
为了能够提高轴套表面缺陷的检测精度和效率,文章提出了改进YOLOv7-tiny的轴套表面缺陷检测算法。首先在模型的特征提取上,针对处理任意维度的数据,把标准卷积替换为全维动态卷积(omni dimensional dynamic convolution,ODConv);其次在特征融合中,把上采样部分的最邻近插值替换为轻量级算子CARAFE;在拼接处引入BiFormer,增加对局部小目标的检测;最后通过把标准卷积替换为GSConv的方式,引入Slim-Neck模块。最终,在轴套数据集上做对比和消融实验,与原模型相比,改进后的算法在mAP上提高了7.7%,在局部小目标上提高了11%;在FPS上提升了40.3。用改进后的算法在公开GC10-DET数据集下做通用性实验,结果表明该算法具有通用性。  相似文献   

8.
热轧带钢表面缺陷在线检测的方法与工业应用   总被引:12,自引:4,他引:12  
热轧带钢表面的温度高,辐射光强,并且存在着水、氧化铁皮、光照不均等现象,与冷轧带钢的表面存在着很大的差别.将线阵CCD摄像机作为图像采集装置,用绿色激光线光源作照明,通过窄带滤色镜滤除钢板表面的辐射光,从而提高了缺陷对比度.根据热轧带钢表面的特点提出新的缺陷检测与识别算法流程,通过增加4种不同类型的缺陷检测步骤,去除了大量由水、氧化铁皮等造成的伪缺陷,在保证缺陷检出率的同时,减小缺陷的误识率.经在线应用,该方法可以满足在线检测的要求,缺陷的检出率达95%以上,识别率达85%以上.  相似文献   

9.
刘熹  陈晨  双丰 《仪器仪表学报》2024,45(9):101-110
针对现有绝缘子检测算法识别种类单一、定位精度差、鲁棒性差等问题,提出了一种改进YOLOv7-tiny的多种类绝缘子检测算法。首先,使用K-means++算法对先验框进行重聚类,获得更适用于多种类绝缘子数据集的先验框尺寸;其次,采用了基于动态非单调的聚焦机制设计的WIoUv3损失函数,解决训练过程中正负样本不均衡问题。在网络结构上,首先在骨干网络使用跨阶段特征融合模块(Cross-stage Feature Fusion-ConvNeXt Block,CFFCB)捕获更多的上下文信息,对一些受到遮挡的绝缘子实现精准检测;同时,在颈部网络,提出了空间金字塔池化模块SPPCSPF(Spatial Pyramid Pooling Cross Stage Partial-Fast)替换了原有的SPPCSP(Spatial Pyramid Pooling Cross Stage Partial),有效提高绝缘子与背景接近时的检测成功率,有效改善漏检情况。经过实验测试,与YOLOv7-tiny相比,改进后的网络模型的mAP提高了2.1%,达到了97.6%,有效提高了多种类绝缘子的检测精度。最后,利用改进后算法的检测结果在UR5机械臂上进行了抓取实验,实际抓取的成功率在90%左右,验证了算法的可行性。  相似文献   

10.
为了实现柱形锂电池缺陷检测的实时性与高精度,提出一种基于改进YOLOv4的柱形锂电池表面缺陷检测算法。将主干网络由CSPDarkNet53替换为轻量化网络Mobile Netv1,使用K-means++算法对锂电池缺陷数据集先验框进行重新聚类,同时构建新的注意力机制ECSA模块关注重要信息。改进后的模型检测精度与检测速度均得到提升。  相似文献   

11.
针对工业生产中铝合金型材表面缺陷在实际检测中出现漏检和误检的情况,提出一种YOLOv5-Ghost-CBAM-Bi FPN模型对铝型材缺陷进行更加精确的检测。首先在YOLOv5 Backbone网中引入了一个轻量级Ghost模块,在保证准确性的前提下显著提高了检测速度。其次,将卷积块注意机制(CBAM)模块添加到Backbone网络的卷积层,以增强特征提取,进一步提高检测精度。此外,考虑到铝型材缺陷尺寸差异,在Neck模块中使用了用于多尺度特征融合的双向特征金字塔网络(Bi-FPN)来聚合不同缺陷类型的特征。实验表明:优化后的模型mAP、精确率P、召回率R都有明显提高。  相似文献   

12.
针对手机镜头固定槽表面缺陷过小导致自动化质检平台难以检测的问题,提出改进YOLOv5的镜头固定槽表面缺陷检测算法实现。在图片预处理阶段使用有效的数据增强策略来平衡不同类别样本的分布;在FPN中添加融合因子控制特征图融合时深层传递到浅层的信息,得到含有更多小目标信息的多尺度特征图;使用K-means算法得到更适合本数据集的先验框数量和大小。通过采集的镜头固定槽表面缺陷数据集评估本算法的性能,并和基线算法YOLOv5进行对比分析。实验结果表明,改进的算法对小目标缺陷拥有更好的检测效果,并且对各类缺陷均能实现准确分类定位,平均精度均值(mAP)达到92.70%,满足智能制造自动化生产的需求。  相似文献   

13.
为了实现电致发光(Electroluminescent,EL)条件下太阳能电池的高精度裂纹和碎片缺陷检测,将多尺度YOLOv5(You Only Look Once version 5)模型用于真实工况下的太阳能电池缺陷检测。首先,提出一种融合可变形卷积(Deformable Convolutional Networks Version 2,DCNv2)和坐标注意力(Coordinate Attention,CA)的改进特征提取网络,拓宽小目标缺陷的感受野,有效增强小尺度缺陷特征的提取。其次,提出一种名为CA-PANet的改进路径聚合网络(Path Aggregation Network,PANet),将CA与跨层级联整合在路径增强结构中,实现浅层特征的复用,使深层特征和浅层特征结合,增强不同尺度缺陷的特征融合,提高缺陷的特征表达能力,提升缺陷检测框的准确度。轻量级CA的计算成本低,保证了模型的实时性。实验结果表明,融合DCNv2与CA注意力的YOLOv5模型平均精度均值(Mean Average Precision, mAP)值可达95.4%,较YOLOv5模型提高3%,较YOLOX...  相似文献   

14.
针对当前PCB板检测参数量庞大、检测精度低等问题,提出了一种改进YOLOv5的检测模型。以YOLOv5模型为框架,采用EfficientNetV2结构替换原始模型的主干网络,针对小目标缺陷,引入对空间信息更敏感的CA注意力机制,并采用α-IoU损失函数提高模型回归精度。实验结果表明:改进后的YOLOv5网络模型较原始网络均值平均精度提高了2.6%,参数量减少47%,可应用在小型工业检测设备中。  相似文献   

15.
齿轮表面的缺陷检测是齿轮生产制造过程中相当重要的工序。为了提高齿轮表面缺陷检测的精度,提出了一种基于改进YOLOv5的算法检测模型BN-YOLOv5。首先,将加权双向特征金字塔网络结构嵌入到颈部网络结构中,强化了网络对不同特征的提取能力;其次,引入轻量级的基于标准化的注意力模块(Normalization-based Attention Module,NAM),将其与加权双向特征金字塔网络结构相结合,以更加有效地融合高层与低层的特征信息;最后,采用深度可分离卷积模块替换网络结构中所有的卷积层,使网络模型更加轻量化。实验结果显示,改进后的算法模型平均精度均值可达到98.5%,检测速度达到66 FPS/s,模型大小为9.69 MB,有效降低了模型的占用内存,可满足在小型移动设备上实时检测齿轮表面缺陷的任务要求。  相似文献   

16.
为解决常规深度学习方法检测轮毂内部缺陷存在模型尺寸大、参数多和精度低等问题,提出一种轻量化YOLOv4的轮毂内部缺陷检测算法。该算法采用MobileNetV3替换YOLOv4的主干特征提取网络,并利用深度可分离卷积模块对YOLOv4的PANet(path aggregation network)模块中的传统卷积进行了替换。同时,在PANet特征加强网络中加入通道注意力机制(SE)模块,提高了轮毂内部缺陷目标的识别精度。测试结果表明,所提算法检测精度为90.23%,权值文件为45.2 MB,检测速率为68.38帧/s。相较于常规模型性能有所提升,更适用于轮毂内部缺陷的快速、准确检测。  相似文献   

17.
针对复杂场景中交通标志尺度变化大导致识别精度低的问题,提出了一种改进的YOLOv4算法。首先,设计了一个注意力驱动的尺度感知特征提取模块,通过构建类似残差结构的分层连接方式,增加每层的感受野范围,以获得更具细粒度的多尺度特征,并在注意力驱动下生成一对具有方向感知与位置敏感的注意力图,使网络能聚焦于更具鉴别力的关键区域;然后,构建一个特征对齐的金字塔卷积特征融合模块,即通过卷积计算相邻尺度特征图间的特征偏移量进行特征对齐;最后,通过金字塔卷积的方式使网络自适应学习最优的特征融合模式,并构建特征金字塔用于识别不同尺度的交通标志。实验结果表明,在TT100K数据集上改进算法比原YOLOv4算法的识别精度提高了5.4%,且优于其他对比识别算法,FPS达到33.17,可满足道路交通标志识别的精确性、实时性等要求。  相似文献   

18.
19.
针对现有冷轧带钢表面的相似线状缺陷检测精度与识别率差的问题,提出一种局部二制模式LBP直方图特征与支持向量机SVM相结合的检测算法。通过对采集的大量划伤与夹杂的带钢表面缺陷图进行预处理,获得感兴趣区域,再进一步利用LBP等价模式获得目标区域的LBP直方图信息,结果显示可以很好地分辨缺陷与非缺陷,并描述的各种缺陷具有可分辨性。采用核函数为径向基函数核的SVM分类器训练识别,结果表明:该方法对划伤和夹杂的缺陷检测准确率达98%。  相似文献   

20.
针对现用PCB缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进YOLOv4算法的PCB缺陷检测方法。使用改进二分K-means聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用PCB小目标缺陷检测的问题。引用MobileNetV3作为特征提取网络,提升对PCB小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。引入Inceptionv3作为检测网络,利用多种卷积核进行运算满足PCB缺陷多类别的检测要求。以PCB_DATASET数据集为测试对象,将本文方法与Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4等开展对比验证实验。结果表明,本文方法均值平均精度(mAP)为99.10%,模型大小为53.2 MB,检测速度为43.01 FPS,检测mAP分别提升4.88%、0.05%、2.01%,模型大小分别减少0、203.2、3.3 MB,检测速度分别提升29.93、6.37、0.79 FPS,满足PCB工业生产现场高检测精度和检测速度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号