首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a simple 1D finite element model was developed to predict the temperature evolution and post-fire mechanical degradation of glass fiber reinforced polymers (FRPs) subjected to constant heat fluxes, including 35 kW/m2, 50 kW/m2, 75 kW/m2, and 100 kW/m2. A temperature-dependent post-fire mechanical property model was proposed and implemented. The calculated temperature and residual mechanical moduli showed good agreement with the experimental data. By properly selecting the parameters of the model, an effective strategy was demonstrated to design FRP structure with enhanced durability.  相似文献   

2.
Torsion tests were conducted on unidirectional carbon/epoxy laminated plates. Preliminary finite element analyses showed that the specimen geometry selected avoided pronounced geometric non-linearity and ensured that a significant volume of material would be under a high fraction of the maximum shear stress. Furthermore, the clear prevalence of in-plane shear stresses allowed the development of a simplified data analysis model. Calculated shear-stress strain curves were consistent with the results of tensile tests on angle-ply coupons, despite lower failure stresses that may have been caused by surface defects or by spurious transverse tensile stresses. Nevertheless, the unidirectional plate torsion test is worthy of further research, given the structural relevance of torsional loads and the problems of in-plane shear tests methods.  相似文献   

3.
Two different composite fastened configurations, i.e. the filled hole and the single-lap double-fastener joint, are experimentally investigated in tensile mode through different loading rates. The composite material system is the UD carbon/epoxy AS4/8552 and the coupons are fastened with titanium countersunk lockbolts. The experiments are performed in a range from quasi-static to 2.8 m/s impact velocity, using an innovative testing device developed and adapted in a drop tower machine. The main experimental observations are the limited loading rate sensitivity in terms of strength for both tested configurations, the elevated absorbed energy values in the dynamic tests of the lap joint samples, as well as the differences in their failure evolution and modes between quasi-static and impact loading.  相似文献   

4.
To successfully reduce a vehicle's weight by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the structure. In this study, we investigated numerical and experimental methods for determining the ply angles and wire diameters of carbon fiber/epoxy composite coil springs to attain a spring rate equal to that of an equivalent steel component. First, the shear modulus ratio for two materials was calculated as a function of the ply angles and compared with the experimental results. Then, by using the equation of the spring rate with respect to the shear modulus and design variables, normalized spring rates were obtained for specific ply angles and wire diameters. Finally, a finite element model for an optimal composite coil spring was constructed and analyzed to obtain the static spring rate, which was then compared with the experimental results.  相似文献   

5.
Multi-scale ballistic material modeling of cross-plied compliant composites   总被引:1,自引:0,他引:1  
The open-literature material properties for fiber and polymeric matrix, unit-cell microstructural characteristics, atomic-level simulations and unit-cell based finite-element analyses are all used to construct a new continuum-type ballistic material model for 0°/90° cross-plied highly-oriented polyethylene fiber-based armor-grade composite laminates. The material model is formulated in such a way that it can be readily implemented into commercial finite-element programs like ANSYS/Autodyn [ANSYS/Autodyn version 11.0, User Documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc. (2007)] and ABAQUS/Explicit [ABAQUS version 6.7, User Documentation, Dessault Systems, 2007] as a User Material Subroutine. Model validation included a series of transient non-linear dynamics simulations of the transverse impact of armor-grade composite laminates with two types of projectiles, which are next compared with their experimental counterparts. This comparison revealed that a reasonably good agreement is obtained between the experimental and the computational analyses with respect to: (a) the composite laminates’ capability, at different areal densities, to defeat the bullets with different impact velocities; (b) post-mortem spatial distribution of damage within the laminates; (c) the temporal evolution of composite armor laminate back-face bulging and delamination; and (d) the existence of three distinct penetration stages (i.e. an initial filament shearing/cutting dominated stage, an intermediate stage characterized by pronounced filament/matrix de-bonding/decohesion and the final stage associated with the extensive back-face delamination and bulging of the armor panel).  相似文献   

6.
This study focuses on multi-axial stitched fabric, which is a thick, high performance reinforcement for large-scale composite structures. The effects of impact damage on multi-axial stitched CFRP laminates molded by vacuum-assisted resin transfer molding (VARTM) method were evaluated. Impact damage within material was evaluated by ultrasonic scanning device and optical cross-sectional observations. Probed images obtained by both non-destructive and destructive methods were compared, and internal damage distributions of multi-axial stitched CFRP laminates were clarified. In addition, residual compressive strength and fatigue property of impact-damaged CFRP laminates were evaluated by in situ damage growth monitoring using the thermo-elastic stress analyzer (TESA). Three-dimensional damage distribution of impacted CFRP laminate was obtained from ultrasonic C-scan images and cross-sectional photographs. Damage progress behavior was observed on a destructive and non-destructive basis by post-impact fatigue (PIF) test.  相似文献   

7.
Glass-fibre reinforced polymer (GFRP) sandwich structures (1.6 m × 1.3 m) were subject to 30 kg charges of C4 explosive at stand-off distances 8–14 m. Experiments provide detailed data for sandwich panel response, which are often used in civil and military structures, where air-blast loading represents a serious threat. High-speed photography, with digital image correlation (DIC), was employed to monitor the deformation of these structures during the blasts. Failure mechanisms were revealed in the DIC data, confirmed in post-test sectioning. The experimental data provides for the development of analytical and computational models. Moreover, it underlines the importance of support boundary conditions with regards to blast mitigation. These findings were analysed further in finite element simulations, where boundary stiffness was, as expected, shown to strongly influence the panel deformation. In-depth parametric studies are ongoing to establish the hierarchy of the various factors that influence the blast response of sandwich composite structures.  相似文献   

8.
The effect of interfacial interaction on the mechanical performance of a group of polypropylene (PP)/barium sulfate (BaSO4) composites were studied. It was found that PP can be toughened with specially treated BaSO4 particles. The interfacial modification contributes to the toughening in two aspects. The first is to provide a proper interfacial adhesion and control the interfacial debonding occurs at well-timed stages. This ensures the inorganic particles transfer the stress and stabilizes the cracks at the initial stage of the deformation, and satisfy the stress conditions for plastic deformation of matrix ligaments subsequently via debonding. The second is that the modified interface between PP matrix and filler particles increases the nucleating ability of the fillers and retards the motion of the PP chains. This leads to the formation of PP crystals with less perfection and smaller size in the matrix and promotes plastic deformation of the matrix after the debonding occurs.  相似文献   

9.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

10.
The fracture behavior of composite bonded joints subjected to mode-I, mode-II and mixed-mode I + II loading conditions was characterized by mechanical testing and numerical simulation. The composite adherents were bonded using two different epoxy adhesives; namely, the EA 9695 film adhesive and the mixed EA 9395-EA 9396 paste adhesive. The fracture toughness of the joints was evaluated in terms of the critical energy release rate. Mode-I tests were conducted using the double-cantilever beam specimen, mode-II tests using the end-notch flexure specimen and mixed-mode tests (three mixity ratios) using a combination of the two aforementioned specimens. The fracture behavior of the bonded joints was also simulated using the cohesive zone modeling method aiming to evaluate the method and point out its strengths and weaknesses. The simulations were performed using the explicit FE code LS-DYNA. The experimental results show a considerable scatter which is common for fracture toughness tests. The joints attained with the film adhesive have much larger fracture toughness (by 30–60%) than the joints with the paste adhesive, which exhibited a rather brittle behavior. The simulation results revealed that the cohesive zone modeling method performs well for mode-I load-cases while for mode-II and mixed-mode load-cases, modifications of the input parameters and the traction-separation law are needed in order for the method to effectively simulate the fracture behavior of the joints.  相似文献   

11.
Ultrasonic propagation was used to provide heat and pressure in order to perform impregnation and consolidation during production of thermoplastic matrix composites. For this purpose, a new experimental set-up, integrating a laboratory filament winding machine with a horn and a compaction roller, was developed.The heat transfer phenomena occurring during continuous impregnation and consolidation were simulated solving by finite element (FE) analysis the energy balance equations in 2D accounting for the heat generated by ultrasonic waves, the melting characteristics of the matrix and the movement of the thermoplastic commingled roving.The temperature distribution in the composite, predicted by the numerical simulations, was validated by temperature measurements during the production of E-glass/polypropylene cylinders, with the optimized parameters obtained by the FE analysis. The ultrasonic consolidated composite cylinders were characterized by low void content and a shear modulus comparable with that obtained by the micromechanical analysis.  相似文献   

12.
The microstructure, mechanical strength, dielectric properties, Doppler broadening measurements and positron life time studies of the composites containing multi walled carbon nanotubes (MWCNTs) and natural rubber (NR) are investigated. The uniform distribution of MWCNTs in the elastomer medium is studied by Raman spectroscopy and the electron microscopy images show the composite’s internal microstructure. Free volume sizes and interstitial mesopore sizes of the nanocomposites are determined by positron annihilation lifetime spectroscopy (PALS). PALS investigates the influence of the nanotubes in regulating the interphase nanoscale character. Strong interfacial interaction causes an apparent reduction of the free-volume fraction of NR probably by depressing the formation of free-volume holes in the interfacial region. The mechanical percolation and percolation observed from the dielectric measurements are correlated with the life time values. It is established that the sub-nano level free volumes and nano level structure of the composites have significant roles in regulating the mechanical properties.  相似文献   

13.
This paper presents the development of a highly efficient user-defined finite element for modelling the bolt-load distribution in large-scale composite structures. The method is a combined analytical/numerical approach and is capable of representing the full non-linear load-displacement behaviour of bolted composite joints both up to, and including, joint failure. In the elastic range, the method is generic and is a numerical extension of a closed-form method capable of modelling the load distribution in single-column joints. A semi-empirical approach is used to model failure initiation and energy absorption in the joint and this has been successfully applied in models of single-bolt, single-lap joints. In terms of large-scale applications, the method is validated against an experimental study of complex load distributions in multi-row, multi-column joints. The method is robust, accurate and highly efficient, thus demonstrating its potential as a time/cost saving design tool for the aerospace industry and indeed other industries utilising bolted composite structures.  相似文献   

14.
This paper is to develop a simple micromechanics-based model taking account of progressive damaging for carbon black (CB) filled rubbers. The present model constitutes of the instantaneous Young's modulus and Poisson's ratio characterizing rubber-like material, a double-inclusion (DI) configuration considering the absorption of rubber chains onto CB particles, and the incremental Mori-Tanaka formula to compute the effective stress–strain relations. The progressive damage in filled rubbers is described by the DI cracking, which is represented by the remaining load–carrying capacity. The present predictions are capable of embodying the well-known S-shaped response of filled rubbers, and also verified by the comparison with the experimental and analytical results. Moreover, strain localization effect is clearly demonstrated by finite element method (FEM) simulations, and reaches a decisive interpretation to the complicated synergic micro-mechanisms between hard fillers and soft phase in such flexible composites.  相似文献   

15.
The failure envelope of the matrix in composite laminates under compressive loads has not received much attention in literature. There are very little to no experimental results to show a suitable failure envelope for this constituent found in composites. With increasing popularity in the use of micromechanical analysis to predict progressive damage of composite structures which requires the use of individual failure criteria for the fibre and matrix, it is important that matrix behaviour under compression is modelled correctly.In this study, off-axis compression tests under uniaxial compression loading are used to promote matrix failure. Through the use of micromechanical analysis involving Representative Volume Elements, the authors were able to extract the principal stresses on the matrix at failure. The results indicated that hydrostatic stresses play an important role in the failure of the matrix. Thus, Drucker–Prager failure criterion is recommended when modelling compressive matrix failure in composite structures.  相似文献   

16.
The use of acoustic emission (AE) for the detection of damage in carbon fibre composite pressure vessels was evaluated for constant and cyclic internal gas pressure loading conditions. AE was capable of monitoring the initiation and accumulation of damage events in a composite pressure vessel (CPVs), although it was not possible to reliably distinguish carbon fibre breakage from other microscopic damage events (e.g. matrix cracks, fibre/matrix interfacial cracks). AE tests performed on the carbon fibre laminate used as the skin of pressure vessels revealed that the development of damage is highly variable under constant pressure, with large differences in the rupture life and acoustic emission events at final failure. Numerical analysis of the skin laminate under constant tensile stress revealed that the high variability in the stress rupture life is due mainly to the stochastic behaviour of the carbon fibre rupture process.  相似文献   

17.
Printed circuit boards (PCBs) assembled with ball grid array (BGA) microelectronics packages were tested in a double cantilever beam (DCB) configuration. The results were compared for a filled and an unfilled underfill epoxy adhesive as well as a cyanoacrylate adhesive. The original fillet, formed in the underfilling process, was modified to create fillets of different sizes. Regardless of the underfill thermal and mechanical properties as well as its curing profile, the crack initiation load and the failure mode were solely a function of the size of the underfill fillet, and the failure always initiated within the PCB. Moreover, the strength of the underfilled solder joints was increased significantly (approximately 100%) by the presence of a relatively large fillet. This effect of the underfill fillet on the crack path and the fracture load was then examined in terms of differences in the stress states using a finite element model.  相似文献   

18.
In this study the effect of moisture absorption on the mechanical properties of glass-reinforced polyester composites is evaluated using both destructive and nondestructive tests. The composite resins were produced with two different production processes, while the mechanical properties of the composite materials were measured using DMA destruction tests. According to the DMA tests, the dependency in terms of temperature for the real component of the complex elastic modulus (E′), the imaginary component of the complex elastic modulus (E″), as well as tan(δ) can be traced. For a more efficient use of the composite materials, the compliance tensor was obtained with nondestructive tests based on ultrasound. A method for the generation and reception of Lamb waves in plates of composite materials is described, based on using air-coupling, low-frequency, ultrasound transducers in a pitch–catch configuration. The results of the nondestructive measurements made in this study are in good agreement with those obtained when using the DMA destructive tests.  相似文献   

19.
A life prediction algorithm and its implementation for a thick-shell finite element formulation for GFRP composites under constant or variable amplitude loading is introduced in this work. It is a distributed damage model in the sense that constitutive material response is defined in terms of meso-mechanics for the unidirectional ply. The algorithm modules for non-linear material behaviour, pseudo-static loading-unloading-reloading response, Constant Life Diagrams and strength and stiffness degradation due to cyclic loading were implemented on a robust and comprehensive experimental database for a unidirectional glass/epoxy ply. The model, based on property definition in the principal coordinate system of the constitutive ply, can be used, besides life prediction, to assess strength and stiffness of any multidirectional laminate after arbitrary, constant or variable amplitude multi-axial cyclic loading. Numerical predictions were corroborated satisfactorily by test data from constant amplitude fatigue of glass/epoxy laminates of various stacking sequences.  相似文献   

20.
This work simulates numerically Double Cantilever Beam and End Notched Flexure experiments on Carbon Fibre Epoxy Resin specimens that have been performed by some of the authors in a previous work. Specimens have been nanomodified by interleaving plies with a layer of electrospun nanofibres in the delaminated interface. Eight different configurations of nanofibres have been used as interleave, for a total of 9 configurations (8 nanomodified plus the virgin one) to be simulated for both kind of tests to identify the cohesive zone parameters corresponding to the effect of nanofibre diameter, nanolayer thickness and nanofibre orientation on the delamination behaviour of the composite.Results showed that a bilinear damage law is necessary for almost all nanomodified configurations, and presented a clear relationship between nanomat layer parameters and the cohesive energy of the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号