首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Science and Technology》2007,67(11-12):2521-2527
The focus of this work is to study nanofibers in three different polymers: polyvinyl alcohol (PVA), polypropylene (PP) and polyethylene (PE). The nanofibers were isolated from a soybean source by combining chemical and mechanical treatments. Isolated nanofibers were shown to have diameter between 50 and 100 nm and the length in micrometer scale which results in very high aspect ratio. The mechanical properties demonstrated an increase in tensile strength from 21 MPa of PVA/UNF5 (untreated-fiber (5 wt%) reinforced PVA) and 65 MPa of pure PVA to 103 MPa of PVA/SBN5 (nanofiber (5 wt%) reinforced PVA). The increased stiffness of PVA/SBN5 nanocomposites was also very promising; it was 6.2 GPa compared to 2.3 GPa of pure PVA and 1.5 GPa of PVA/UNF5. In solid phase melt-mixing, nanofiber was directly incorporated into the polymer matrix using a Brabender. The nanofiber addition significantly changed the stress–strain behavior of the composites: modulus and stress were increased with coated nanofibers by ethylene–acrylic oligomer emulsion as a dispersant; however, elongation was reduced. The dynamic mechanical analysis showed the addition of the soybean nanofiber (SBN) improved the thermal properties for PVA and how the addition of different contents of SBN influenced the tan δ peak and storage modulus of PVA.  相似文献   

2.
In this study, two types of polyimide (PI) nanofiber mats, including (1) the mats consisting of (almost) randomly overlaid PI nanofibers and (2) the mats consisting of highly aligned PI nanofibers, were prepared by the materials-processing technique of electrospinning. The nanofiber mats were subsequently used to develop composites with polyamide 6 (PA6) via the composites – fabrication method of polymer melt infiltration lamination (PMIL). Owing to superior mechanical properties (i.e., the tensile strength and modulus were 1.7 GPa and 37.0 GPa, respectively) and large specific surface area of electrospun PI nanofibers, the PI/PA6 composites with PI nanofiber mats as skeletal framework demonstrated excellent mechanical properties. In particular, the PI/PA6 composite containing 50 wt.% of aligned PI nanofibers had the tensile strength and modulus of 447 MPa and 3.0 GPa along the longitudinal direction, representing ~700% and ~500% improvements as compared to neat PA6.  相似文献   

3.
In this study, we report a novel, eco-friendly and simple method to fabricate cellulose nanofibers (CNFs)/silver nanowires (AgNWs)/acrylic resin (AR) composite electrode. CNFs with average diameter of 15 nm were disintegrated only by one time-pass grinding. Aqueous dispersion of AgNWs was embedded onto the surface of CNFs film by simple vacuum filtration. The final composite electrode was obtained by impregnating CNFs/AgNWs film to AR with the assist of adhesive tape. This electrode with AgNWs density of 134 mg/m2 showed low sheet resistance (4 Ω/sq), and high light transmittance (85%) which was 6% lower than that of neat AR. The coefficient of thermal expansion of the composite electrode was as low as 25.32 ppm K−1. The tensile strength and Young’s modulus of CNFs/AgNWs/AR composite film were 35.71 MPa and 1.63 GPa, which were about 8 and 5.8 times larger than neat AR film, respectively.  相似文献   

4.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

5.
A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti and graphite at 1000 °C for about 1 min after ball-milling and compaction. The resulting composite is made of an aluminium matrix reinforced by nanometer sized TiC particles (average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The microstructure consists of an intimate mixture of two domains, an unreinforced domain made of the Al solid solution with a low TiC reinforcement content, and a reinforced domain. This composite exhibits uncommon mechanical properties with regard to previous micrometer sized Al–TiC composites and to its high reinforcement volume fraction, with a Young’s modulus of ∼110 GPa, an ultimate tensile strength of about 500 MPa and a maximum elongation of 6%.  相似文献   

6.
Bismaleimide–triazine (BT) resins have received a great deal of attention in microelectronics due to its excellent thermal stability and good retention of mechanical properties. Thereafter, developing BT based composites with high mechanical strength, thermal conductivity and dielectric property simultaneously are highly desirable. In this study, one hybrid fiber of Al2O3 nanoparticle (200 nm) supported on polyimide fiber (Al2O3@PI) with core–shell structure was introduced into BT resin to prepare promising Al2O3@PI–BT composite. The results indicated that the resultant composites possessed high Young’s modulus of 4.06 GPa, low dielectric constant (3.38–3.50, 100 kHz) and dielectric loss (0.0102–0.0107, 100 kHz). The Al2O3@PI hybrid film was also conductive to improve thermal stability (Td5% up to 371 °C), in-plane thermal conductivity (increased by 295% compared to that of the pure BT resin). Furthermore, the Al2O3@PI–BT composite were employed to fabricate a printed circuit substrate, on which a frequency “flasher” circuit and electrical components worked well.  相似文献   

7.
A PMR polyimide composite reinforced with three-dimensional (3D) woven basalt fabric is fabricated for medium high temperature applications. The PMR polyimide matrix resin is derived from 4,4′-methylenediamine (MDA), diethyl ester of 3,3′,4,4′-oxydiphthalic (ODPE) and monoethyl ester of Cis-5-norbornene-endo-2,3-dicarboxylic acid (NE). The rheological properties of the PMR polyimide matrix resin are investigated. Based on the curing reaction of the PMR type polyimide and the rheological properties, an optimum two-step fabrication method is proposed. The three dimensional fabric preforms are impregnated with the polyimide resin in a vacuum oven at 70 °C for 1 h followed by removing the solvent and pre-imidization. The composites are then consolidated by an optimized molding procedure. Scanning electron microscopy analysis shows that needle shaped voids are generated in yarns and the void volume fraction is 4.27%. The decomposition temperature and the temperature at 5% weight loss of the composite post-cured at 320 °C for 24 h are 440 °C and 577 °C, respectively. The dielectric constant and the dielectric loss of the composite are measured by circular cavity method at 7–12 GHz. The tensile strength and the modulus in the warp direction of the composite are 436 MPa and 22.7 GPa. The composite shows a layer-by-layer fracture mode in three-point bending test. The flexure strength and modulus in the warp direction of the composite are 673 MPa and 27.1 GPa, respectively.  相似文献   

8.
The mechanical and thermal properties of the grouts are critical to their potential application as infill materials in structural repair. In this paper, the mechanical and thermal behaviour of five epoxy based grouts were investigated to identify their prospects as a component of the composite repair for steel pipelines. The compressive strength and stiffness of the grouts are found to be 52–120 MPa and 1.7–11 GPa, respectively. The tensile, flexural and shear strengths of the grouts are found to be within the ranges of 11–32, 27–53, and 13–30 MPa, respectively. The tensile and flexural moduli range within 3–17, and 4–13 GPa, respectively. Thermal analysis of the grouts suggests that the glass transition temperature (Tg) within 60 and 90 °C which also provide the thermal applicability limits for the grouts in the composite repair of steel pipes. The development of compressive properties of three selected grouts over 28 days period was also investigated as well as the effect of the addition of coarse fillers.  相似文献   

9.
Using pressureless infiltration of copper into a bed of coarse (180 μm) diamond particles pre-coated with tungsten, a composite with a thermal conductivity of 720 W/(m K) was prepared. The bending strength and compression strength of the composite were measured as 380 MPa. As measured by sound velocity, the Young's modulus of the composite was 310 GPa. Model calculations of the thermal conductivity, the strength and elastic constants of the copper–diamond composite were carried out, depending on the size and volume fraction of filler particles. The coincidence of the values of bending strength and compressive strength and the relatively high deformation at failure (a few percent) characterize the fabricated diamond–copper composite as ductile. The properties of the composite are compared to the known analogues — metal matrix composites with a high thermal conductivity having a high content of filler particles (~ 60 vol.%). In strength and ductility our composite is superior to diamond–metal composites with a coarse filler; in thermal conductivity it surpasses composites of SiC–Al, W–Cu and WC–Cu, and dispersion-strengthened copper.  相似文献   

10.
Silica nanoparticle reinforced poly (vinyl alcohol) cast sheets 40 μm thick were tested for mechanical and biological properties. The films were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The crystallinity decreased with increased silica content. Changes in the morphology and structure upon the addition of silica suggest the formation of cross-linking. The modulus increased from 300 MPa for PVA to 7.2 GPa for 120 wt.% silica nanoparticle in the blend and the tensile strength increased from 3.5 MPa to 35 MPa. The modulus estimated using dynamic tests, tensile tests, and nanoindentation was comparable and was predicted well using the Halpin-Tsai's equation. The nanocomposites were an order of magnitude tougher than the pure polymer. Silica based nanocomposite was also found to be an excellent template for the deposition of calcium hydroxyapatite when immersed in simulated body fluid. The modulus and tensile strength of apatite coated silica nanoparticle (120 wt.%)–PVA composite increased to 11 GPa and 65 MPa respectively, close to that of cortical bone. The results represent one of the largest increases in mechanical properties of nanocomposite mimicking the properties of human bone. The addition of silica can also aid in osseointegration.  相似文献   

11.
In this work, nanoporous spinel/forsterite/zirconia ceramic composites were fabricated at 1600 °C for 2 h. The influence of zirconia content (up to 10 mass%) on the technological properties, nanopores formation, phase compositions, microstructure and thermal diffusivity of nanoporous ceramic composites was investigated. Nanospinel and nanoforsterite powders were synthesized via a modified co-precipitation and sol–gel techniques, respectively. Results indicated that apparent porosity of the fired nanoporous ceramic composites is mostly in the range 14.26–56.14% with the average pores diameter 35.8 nm. Using of nanopowders (spinel and forsterite) as the staring materials were achieved high mechanical (cold crushing strength  235–164 MPa) and elastic (Young’s modulus  123.6–4.5 GPa) properties of the prepared nanoporous ceramic composites. Microstructure analysis exhibited all of the crystalline phases and pores of the nanoporous ceramic composites are in the nanosize (35–40 nm). These nanoporous ceramic composites are promising porous ceramic materials for using in advanced applications due to their excellent combination properties.  相似文献   

12.
Natural biocomposites were prepared from flax fibers and mucilage polysaccharides extracted from flax seeds, as a matrix, in two steps: impregnation and compression molding. The ribbons were preimpregnated with water plasticized mucilage. Solid mucilage (30%, w/w) was added to the ribbon impregnated with 20% mucilage, and the composite was compression molded. The solidified mucilage was homogeneous and rigid (2 GPa) with an elastic deformation of approximately 1%. The mechanical properties of the composites were in the ranges of 7–10 GPa, 300–400 MPa and 4–5% for the modulus, maximal strength and strain, respectively. The two latter parameters were larger than the ones for the fiber. The experimental values of the modulus and strength were in accordance with the values computed using the rule of mixture, which indicated a good interface between the fibers and the matrix. This was confirmed visually with scanning electron microscopy. The water sorption behavior of the composites was intermediate between the mucilage and the fiber alone.  相似文献   

13.
Mesoporous tungsten oxide nanofibers were synthesized via a 500 °C thermal treatment of composite nanofibers prepared by electrospinning an ethanol solution consisting of tungsten ethoxide, P123 triblock copolymer, and polyvinylpyrrolidone. The as-electrospun composites exhibited unwoven nanofibers with an average diameter of 233 nm and a smooth surface morphology. During the calcination process, the composite nanofibers were shrunk to 85 nm in diameter and converted into rough, wormhole-like nanofibers. These were formed by agglomerating polycrystalline WO3 particles of 10–30 nm along the axial direction. Furthermore, a measured pore-size distribution indicated that this nanofiber mat had different types of meso-sized porosities, which may have resulted from their wormhole-like structures and inter-fiber voids. In addition, it was observed to have the intra-grain porosity with the diameter of about 1.0 nm.  相似文献   

14.
Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212 °C for 8 h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20 wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34 GPa. The FMOE increased by 101% and 82% with the addition of 30 wt.% heat treated pine and 20 wt.% heat treated maple, where it reached maximum values of 4.71 GPa and 4.27 GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250 °C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.  相似文献   

15.
The aim of this work is to study the behavior of E-glass fiber unsaturated polyester composites, subjected to moderate and high temperatures. The obtained results show that the chemical, physical and mechanical properties of the resin and the composite change with the rise of the temperature. A thermogravimetric analysis (TGA) revealed that the thermal degradation of the composite occurs in two steps: the first between 130 and 200 °C and the second between 250 and 440 °C.The characterization of the resin and the composite, after heating, revealed that at moderate temperatures (lower than 100 °C) an improvement of the properties of materials is observed. For high temperatures but lower than the temperature of decomposition (Td), the mechanical strength of the resin does seem to be very affected, even improved for certain cases. For these temperatures, the composite presents some fractures of the fiber–matrix interfaces, which causes losses in strength and ductility.When the temperature reaches the temperature of decomposition (Td), a fall of the mechanical properties was recorded for both resin and composite.  相似文献   

16.
Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.  相似文献   

17.
Full dense alumina + 40 vol.% aluminium titanate composites were obtained by colloidal filtration and fast reaction-sintering of alumina/titania green bodies by spark plasma sintering at low temperatures (1250–1400 °C). The composites obtained had near-to-theoretical density (>99%) with a bimodal grain size distribution. Phase development analysis demonstrated that aluminium titanate has already formed at 1300 °C. The mechanical properties such as Vickers hardness, flexural strength and fracture toughness of bulk composites are significantly higher than those reported elsewhere, e.g. the composite sintered at 1350 °C show values of about 24 GPa, 424 MPa and 5.4 MPa m1/2, respectively. The improved mechanical properties of these composites are attributed to the enhanced densification and the finer and more uniform nanostructure achieved by non-conventional fast sintering of slip-cast dense green compacts.  相似文献   

18.
Hydrophobic cellulose nanofibers (CNFs) were prepared by surface modification using alkenyl succinic anhydride (ASA). The hydrophobicity of CNFs was varied by changing the degree of substitution (DS) from 0 to 0.83. Modified CNFs were mixed with high-density polyethylene (HDPE) using a twin-screw extruder and the resulting composites were injection molded. The tensile properties initially improved with increasing DS up to ∼0.3–0.5, and then decreased with further substitution. The tensile strength and modulus of 10 wt.% HDPE/CNF composites containing 8.8 wt.% ASA (DS: 0.44) were 43.4 MPa and 1.97 GPa, respectively. These values were both almost 70% higher than those of composites containing unmodified CNF, and 100% and 86% higher, respectively, than those for pure HDPE. X-ray computed tomography measurements showed that CNFs modified with a DS of 0.44 were dispersed uniformly within the resin matrix, whilst unmodified CNFs and those modified with a DS of 0.77 agglomerated within the composites.  相似文献   

19.
Organic–inorganic composites with nanostructure could exhibit a diverse range of multi-functional properties. In this study, nafion/silica composite nanofibers were successfully fabricated by using electrospinning technique with nafion coated surface. The tunable wettability of composite nanofiber was controlled by addition of nafion or flame-treatment. The thermal stability of nafion has been improved as it hybridized with silica nanofiber. Interestingly, the hydrophobic behavior still existed after heat-treatment with 500 °C for 2 h. The fire resistant property of composite nanofiber has been characterized. The effect of nafion polymer and post treatment on the morphology and wettability of composite nanofiber was evaluated. The mechanism of formation of nafion/silica composite nanofiber during electrospinning process has been proposed. The results of this study improve the understanding of the structure rearrange in organic–inorganic sols during high voltage field.  相似文献   

20.
The aim of this research is to manufacture intermingled hybrid composites using aligned discontinuous fibres to achieve pseudo-ductility. Hybrid composites, made with different types of fibres that provide a balanced suite of modulus, strength and ductility, allow avoiding catastrophic failure that is a key limitation of composites. Two different material combinations of high strength carbon/E-glass and high modulus carbon/E-glass were selected. Several highly aligned and well dispersed short fibre hybrid composites with different carbon/glass ratios were manufactured and tested in tension in order to investigate the carbon ratio effect on the stress–strain curve. Good pseudo-ductile responses were obtained from the high modulus carbon/E-glass composites due to the fragmentation of the carbon fibres. The experimental results were also compared with an analytical solution. The intermingled hybrid composite with 0.25 relative carbon ratio gave the maximum pseudo-ductile strain, 1.1%, with a 110 GPa tensile modulus. Moreover, the initial modulus of the intermingled hybrids with 0.4 relative carbon ratio is 134 GPa, 3.5 times higher than that of E-glass/epoxy composites. The stress–strain curve shows a clear “yield point” at 441 MPa and a well dispersed and gradual damage process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号