首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth and characterization of pn-junction photodiode based on GaN grown on Si (111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The structural and optical properties of samples were studied by HR-XRD and Fourier FTIR spectroscopy, respectively. For IR reflectance analysis, GaN-like and AlN-like E2 TO optical modes have been detected. By using the thermal evaporator, Ni/Ag and Al contacts were evaporated at the front and back of samples. The application of thermal annealing treatment in oxygen ambient has been shown to significantly reduce the dark current of GaN pn-junction photodiode. The electrical characteristics of all samples were conducted using Keithley's IV measurement system. Under 460-nm wavelength, at bias voltages of 0.5, 1, and 2 V, the photocurrents rise and decay times were investigated.  相似文献   

2.
We have used MBE to grow in AlN/GaN superlattices, with different number of periods, on 2.5-μm-thick MOVPE-GaN templates to study the development of defects such as surface deformation due to strain. After growth the samples were studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), XRD and Fourier transform infrared spectroscopy (FT-IR). The strain increased with the number of quantum wells (QWs) and eventually caused defects such as microcracks visible by optical microscopy at four or more QW periods. High-resolution TEM images showed shallow recessions on the surface (surface deformation) indicating formation of microcracks in the MQW region. The measured intersubband (IS) absorption linewidth from a four period structure was 97 meV, which is comparable with the spectrum from a 10 period structure at an absorption energy of ∼700 meV. This indicates that the interface quality of the MQW is not substantially affected by the presence of cracks.  相似文献   

3.
采用不同厚度AlN作为缓冲层在6H-SiC衬底上生长了GaN外延层,并利用X射线衍射,拉曼散射和透射电子显微镜等对GaN性质进行了研究。AlN缓冲层的应变状态对GaN的晶体质量和表面形貌有很大影响。较厚的AlN缓冲层会导致GaN表面出现裂纹,而太薄的AlN缓冲层会导致GaN层较高的位错密度,从而恶化器件性能。分析了GaN产生裂纹和高位错密度的机制,并采用较优厚度(100nm)的AlN缓冲层生长出高质量的GaN外延层。  相似文献   

4.
Characteristics of GaN grown on 6H-SiC (0001) substrates using different thicknesses of AlN buffers are studied. It is found that the surface morphology and crystal quality of GaN film closely depends on the strain state of the AlN buffer. For a thicker AlN buffer, there are cracks on GaN surface, which make the GaN films unsuitable for applications. While for a thinner AlN buffer, more dislocations are produced in the GaN film, which deteriorates the performance of GaN. Possible generation mechanisms of cracks and more dislocations are investigated and a ~100 nm AlN buffer is suggested to be a better choice for high quality GaN on SiC.  相似文献   

5.
Conventional HgCdTe infrared detectors need significant cooling in order to reduce noise and leakage currents resulting from thermal generation and recombination processes. Although the need for cooling has long been thought to be fundamental and inevitable, it has been recently suggested that Auger recombination and generation rates can be reduced by using the phenomena of exclusion and extraction to produce nonequilibrium carrier distributions. The devices with Auger suppressed operation requires precise control over the composition, and donor and acceptor doping. The successful development of the molecular beam epitaxy (MBE) growth technique for multi-layer HgCdTe makes it possible to grow these device structures. Theoretical calculations suggest that the p n+ layer sequence is preferable for near-room temperature operation due to longer minority carrier lifetime in lightly doped p-HgCdTe absorber layers. However, because the low doping required for absorption and nonequilibrium operation is easier to achieve in n-type materials, and because Shockley-Read centers should be minimized in order to obtain the benefits of Auger suppression, we have focused on p+ n structures. Planar photodiodes were formed on CdTe/Si (211) composite substrates by As implantation followed by a three step annealing sequence. Three inch diameter Si substrates were employed since they are of high quality, low cost, and available in large areas. Due to this development, large area focal plane arrays (FPAs) operated at room temperature are possible in the near future. The structures were characterized by FTIR, x-ray diffraction, temperature dependent Hall measurements, minority carrier lifetimes by photoconductive decay, and in-situ ellipsometry. To study the relative influence of bulk and surface effects, devices with active areas from 1.6 10−5 cm2 to 10−3 cm2 were fabricated. The smaller area devices show better performance in terms of reverse bias characteristics indicating that the bulk quality could be further improved. At 80 K, the zero bias leakage current for a 40 m 40 m diode with 3.2 m cutoff wavelength is 1 pA, the R0A product is 1.1 104-cm2 and the breakdown voltage is in excess of 500 mV. The device shows a responsivity of 1.3 107 V/W and a 80 K detectivity of 1.9 1011 cm-Hz1/2/W. At 200 K, the zero bias leakage current is 5 nA and the R0A product 2.03-cm2, while the breakdown voltage decreases to 40 mV.  相似文献   

6.
AlN/GaN high-electron-mobility transistors(HEMTs)on SiC substrates were fabricated by metalorganic chemical vapor deposition(MOCVD)and then characterized.An Si/Ti/Al/Ni/Au stack was used to reduce ohmiccontactresistance(0.33 mm)atalowannealingtemperature.Thefabricateddevicesexhibitedamaximum drain current density of 1.07 A/mm(VGS D1 V)and a maximum peak extrinsic transconductance of 340 mS/mm.The off-state breakdown voltage of the device was 64 V with a gate–drain distance of 1.9 m.The current gain extrinsic cutoff frequency fT and the maximum oscillation frequency fmax were 36 and 80 GHz with a 0.25 m gate length,respectively.  相似文献   

7.
采用激光分子束外延法在Si(111)衬底上制备出沿c轴取向的AlN薄膜,在此基础上制备了Au/AlN/Si金属-绝缘体-半导体(MIS)结构。研究了结构的电流传输机制、AlN/Si界面处的界面态密度值及分布情况。结果表明:AlN/Si异质结具有很好的整流特性,电流传输符合空间电荷限制传输机制,理想因子为2.88;结构的界面态密度约为1.1×10~(12) eV~(-1)·cm~(-2),主要分布在距离Si衬底价带顶0.26eV附近,由生长过程中引入的O杂质、N空位/N替代和Si原子代替N原子形成的Al-Si键组成。  相似文献   

8.
The DC performance of AlGaN/GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy was investigated for gate lengths in the range 0.1–1.2 μm. On 0.25 μm gate length devices we obtained 40 VDS operation with >50 mA peak ID. The peak drain current density was 0.44 A/mm for 100 μm gate width devices with 1.2 μm gate lengths. The extrinsic transconductance (gm) decreased with both gate length and gate width and was 75 mS/mm for all gate widths for 0.25 μm devices. E-beam written gates typically produced a slightly lower Schottky barrier height than optically patterned gates.  相似文献   

9.
基于GaAs/Si材料中位错的运动反应理论,修正获得CdTe/Si和HgCdTe/Si外延材料中的位错运动反应模型.采用快速退火方法对Si基HgCdTe外延材料进行位错抑制实验研究,实验结果与理论曲线基本吻合,从理论角度解释了不同高温热处理条件对材料体内位错的抑制作用.对于厚度为4~10μnn的CdTe/Si进行500...  相似文献   

10.
采用激光分子束外延法在Si(111)衬底上制备出沿c轴取向的AlN薄膜,在此基础上制备了Au/AlN/Si 金属 绝缘体 半导体(MIS)结构。研究了结构的电流传输机制、AlN/Si界面处的界面态密度值及分布情况。结果表明:AlN/Si异质结具有很好的整流特性,电流传输符合空间电荷限制传输机制,理想因子为2.88;结构的界面态密度约为1.1×1012 eV-1·cm-2,主要分布在距离Si衬底价带顶0.26 eV附近,由生长过程中引入的O杂质、N空位/N替代和Si原子代替N原子形成的Al-Si键组成。  相似文献   

11.
12.
We studied the influence of high temperature AlN buffer thickness on the property of GaN film on Si (1 1 1) substrate. Samples were grown by metal organic chemical vapor deposition. Optical microscopy, atomic force microscopy and X-ray diffraction were employed to characterize the samples. The results demonstrated that thickness of high temperature AlN buffer prominently influenced the morphology and the crystal quality of GaN epilayer. The optimized thickness of the AlN buffer is found to be about 150 nm. Under the optimized thickness, the largest crack-free range of GaN film is 10 mm×10 mm and the full width at half maximum of GaN (0 0 0 2) rocking curve peak is 621.7 arcsec. Using high temperature AlN/AlGaN multibuffer combined with AlN/GaN superlattices interlayer we have obtained 2 μm crack-free GaN epilayer on 2 in Si (1 1 1) substrates.  相似文献   

13.
A high temperature AlN template was grown on sapphire substrate by metalorganic chemical vapor deposition.AFM results showed that the root mean square of the surface roughness was just 0.11 nm.Optical transmission spectrum and high resolution X-ray diffraction(XRD)characterization both proved the high quality of the AlN template.The XRD(002)rocking curve full width at half maximum(FWHM)was about 53.7 arcsec and(102)FWHM was about 625 arcsec.The densities of screw threading dislocations(TDs)and edge TDs wereestimated to be - 6 × 10^6 cm^-2 and - 4.7 ×10^9 cm^-2. AlGaN of Al composition 80.2% was further grown on the AlN template. The RMS of the surface roughness was about 0.51 nm. XRD reciprocal space mapping was carried out to accurately determine the Al composition and relaxation status in the AlGaN epilayer. The XRD (002) rocking curve FWHM of the AIGaN epilayer was about 140 arcsec and (102) FWHM was about 537 arcsec. The density of screw TDs was estimated to be - 4 × 10^7 cm^-2 and that of edge TDs was - 3.3 × 10^9 cm^-2. These values all prove the high quality of the AlN template and AlGaN epilayer.  相似文献   

14.
We report the DC and RF characteristics of AlN/GaN high electron mobility transistors(HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 m S/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 m W/mm has been demonstrated at a drain bias of 10 V. To the authors’ best knowledge, this is the earliest demonstration of power density at the Ka band for Al N/Ga N HEMTs in the domestic, and also a high frequency of load-pull measurements for Al N/Ga N HEMTs.  相似文献   

15.
A visible-blind ultraviolet (UV) photodetector (PD) with metal-semiconductor-metal (MSM) structure has been developed on a cubic-crystalline SiCN film. The cubic-crystalline SiCN film was deposited on Si substrate with rapid thermal chemical vapor deposition (RTCVD). The optoelectron performances of the SiCN-MSM PD have been examined by the measurement of photo and dark currents and the currents' ratio under various operating temperatures. The current ratio for 254-nm UV light of the detector is about 6.5 at room temperature and 2.3 at 200/spl deg/C, respectively. The results are better than the counterpart /spl beta/-SiC of 5.4 at room temperature, and less than 2 for above 100/spl deg/C, thus offering potential applications for low-cost and high-temperature UV detection.  相似文献   

16.
High electron mobility transistors (HEMTs) were fabricated from AlGaN/-GaN layers grown by plasma-assisted molecular beam epitaxy on semi-insulating 6H-SiC substrates. Room-temperature Hall effect measurements yielded a polarization-induced 2DEG sheet charge of 1.3/spl middot/10/sup 13/ cm/sup -2/ and a low-field mobility of 1300 cm/sup 2//V/spl middot/s. Submicron gates were defined with electron beam lithography using an optimized two-layer resist scheme. HEMT devices repeatedly yielded drain current densities up to 1798 mA/mm, and a maximum transconductance of 193 mS/mm. This is the highest drain current density in any AlGaN-GaN HEMT structure delivering significant microwave power reported thus far. Small-signal testing of 50-/spl mu/m wide devices revealed a current gain cutoff frequency f/sub T/ of 52 GHz, and a maximum frequency of oscillation f/sub max/ of 109 GHz. Output power densities of 5 W/mm at 2 GHz, and 4.9 W/mm at 7 GHz were recorded from 200-/spl mu/m wide unpassivated HEMTs with a load-pull setup under optimum matching conditions in class A device operation.  相似文献   

17.
采用低温AlN成核层,在Si(111)衬底上,用金属有机化学气相沉积(MOCVD)法生长了GaN薄膜。采用高分辨X射线衍射(XRD)、椭圆偏振光谱仪和原子力显微镜(AFM)研究了AlN成核层的厚度对GaN外延层的影响。对AlN的测试表明,AlN的表面粗糙度(RMS)随着厚度增加而变大。对GaN的测试表明,所有GaN样品在垂直方向处于压应变状态,并且随AlN厚度增加而略有减弱。GaN的(0002)_ω扫描的峰值半宽(FWHM)随着AlN成核层厚度增加而略有升高,GaN(10-12)_ω扫描的FWHM随着厚度增加而有所下降。(10-12)_ω扫描的FWHM与GaN的刃型穿透位错密度相关,A1N成核层的厚度较大时会降低刃型穿透位错密度,并减弱c轴方向的压应变状态。  相似文献   

18.
陈路  傅祥良  巫艳  吴俊  王伟强  魏青竹  王元樟  何力 《激光与红外》2006,36(11):1051-1053,1056
文章报道了Si基碲镉汞分子束外延(MBE)的最新研究进展。尝试用晶向偏角降低高界面应变能的方法,摸索大失配体系中位错的抑制途径,寻找位错密度与双晶半峰宽的对应关系,基本建立了外延材料晶体质量无损检测评价标准,并对外延工艺进行指导。通过上述研究,15~20μm Si基CdTe复合材料双晶半峰宽最好结果为54arcsec,对应位错密度(EPD)小于2×106/cm2,与相同厚度的GaAs/CdTe(211)双晶水平相当,达到或优于国际最好结果。获得的3 in 10μm Si基HgCdTe材料双晶半峰宽最好结果为51arcsec,目前Si基HgCdTe材料已经初步应用于焦平面中波320×240器件制备。  相似文献   

19.
The AlGaN/GaN heterostructure field-effect transistors (HFETs) were grown on 4H-SiC substrates by metal-organic chemical-vapor deposition (MOCVD) with a range of Al compositions (30–35%) and AlGaN barrier thicknesses. Films with higher strains exhibited a time-dependent degradation of the two-dimensional electron gas (2DEG) that varied from days to weeks. Atomic force microscopy (AFM) measurements of the degraded films revealed a hexagonal cracking pattern with an increase in the medium-scale surface roughness. The localized strain relaxation of AlGaN barriers and increased roughness of the AlGaN/GaN interface and AlGaN surface result in a broad shoulder at the lower angle of the AlGaN peak and a loss of satellite fringes in the (0006) reflection x-ray diffraction (XRD) curve. This degradation raises serious questions with regard to reliability and survivability of AlGaN HFETs and may complicate device fabrication.  相似文献   

20.
GaN was grown on porous silicon (PS) substrates by Metalorganic Vapour Phase Epitaxy at temperature of 1050 °C. An additional AlN buffer layer is used between GaN and PS. The crystalline quality and surface morphology of GaN films were studied by X-ray diffraction and scanning electron microscope (SEM), respectively. Preferential growth of hexagonal GaN with 〈00.1〉 direction is observed and is clearly improved when the thickness of AlN buffer layer increases. Morphological changes in PS layer appearing after growth have been also discussed.GaN optical qualities were determined by photoluminescence at low and room temperature (RT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号