首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, dielectric materials with excellent mechanical and hydrophobic properties are desired for use in the integrated circuits (ICs). For this reason, low dielectric constant fluorographene/polyimide (FG/PI) composite films were prepared by a facile solution blending method, suggesting that the mechanical, electrical, hydrophobic and thermal properties were significantly enhanced in the presence of FG. With addition of 1 wt% FG, the tensile strength, Young’s modulus and elongation at break were dramatically increased by 139%, 33% and 18% respectively when compared with pure PI film. Furthermore, composite films exhibit superior hydrophobic and thermal stability performance. Especially, the FG/PI film with 0.5 wt% of FG possessing a low dielectric constant of 2.48 and a good electrical insulativity that is lower than 10−14 S m−1. Therefore, by their excellent performance, FG/PI hybrid films represent suitable candidate solutions with applications in the microelectronics and aerospace industries.  相似文献   

2.
The present study deals with the properties of polycarbonate (PC)/clay nanocomposites prepared through melt and solution blending at two different clay loadings (0.5 phr and 1 phr) with preserved optical transparency of PC. The organoclay was prepared by exchanging the Na+ ions presented in the clay galleries of Na-MMT with butyltriphenylphosphonium (BuTPP+) ions, and denoted as BuTPP-MMT. The outstanding thermal stability of the BuTPP-MMT (∼1.44 wt% loss at 280 °C, after 20 min), concomitant with the increase in gallery height from 1.24 nm to 1.83 nm, proved its potentiality as nanofiller for melt-blending with PC. The X-ray diffraction analysis (XRD) revealed the destruction of the ordered geometry of aluminosilicate layers in the nanocomposites. However, from direct visualization through transmission electron microscopy, a discernible amount of clay was found to be localised in PC matrix in the 1 phr clay loaded nanocomposites (TEM). The differential scanning calorimetric (DSC) study revealed a nominal increase in glass transition temperature (Tg) of the PC in the nanocomposites. The thermal stability of the nanocomposites was increased with increase in clay loading. The nanocomposites possessed improved tensile strength and modulus than that of the virgin PC and the properties were related to the amount of clay loading and degree of clay dispersion. The dynamic mechanical analysis (DMA) revealed that the storage modulus increased in both the glassy and rubbery region with increase in clay loadings in the nanocomposites. Moreover, the optical transparency of the PC was retained in the PC/clay nanocomposites without development of any colour in the nanocomposites.  相似文献   

3.
Transparent cellulose nanowhiskers (CNW)/graphene (GN) and CNW/multi-wall carbon nanotube (MWCNT) films were obtained by ultrasonication assisted mechanically stirring followed by solvent casting methods. GN has more significant influence on the properties of CNW film than MWCNT does because GN exhibits strong interaction with CNW by its adsorption on the surface of GN. Thermal behaviors of CNW-based composite films were greatly affected by addition of GN or MWCNT. The melting peak and initial degradation temperature increase by 23.5 and 24 °C, and by 78 °C and 94 °C for the composite films containing 5 wt% MWCNT and 5 wt% GN, respectively. The composites show the contact angles of 61.9° for GN included film and 46.9° for MWCNT included film, which is higher than that of pure CNW film (42.8°).  相似文献   

4.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

5.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

6.
In order to explore the addition effect of fluorinated graphene (FG) on the mechanical and thermal performances of polyimide (PI) matrix, FG sheets are first prepared and employed as the nanofillers to construct PI/FG nanocomposite films. The prepared film is optically transparent at low content of FG and experimental results demonstrate that the addition of FG can effectively enhance the properties of PI matrix. Especially, compared with pure PI matrix, the addition of 0.5 wt% FG in PI can endow 30.4% increase in tensile stress and 115.2% increase in elongation at break. Experimental analyses considering the morphology and microstructure are also conducted, and the results indicate that the improved mechanical properties of the PI/FG nanocomposite films are mainly attributed to the good dispersibility of FG sheets in PI host, and the effective stress transfer between the polymer and the FG.  相似文献   

7.
In current study, weight percentage of nano silica and nano clay and also fiber orientation have been chosen as independent variables and the affect of these variables on tensile and izod impact strength of epoxy/glass fiber/SiO2/clay hybrid laminate composite has been investigated. Central composite design (CCD) which is subset of response surface methodology has been employed to present mathematical models as function of physical factors to predict tensile and impact behavior of new mentioned hybrid nano composite and also optimizing mentioned mechanical properties. Totally 20 experiments were designed with 6 replicates at center point. The maximum and minimum value of tensile strength were 450.90 MPa and 158.16 MPa which occurred in design levels 1 and 14 respectively, also the maximum and minimum of izod impact strength were 10.47 kJ/m2 and 2.56 kJ/m2 which occurred in design levels 13 and 14 respectively. The optimization results using optimization part of Minitab software showed that the best tensile strength was obtained 488.53 MPa and occurred in 3.5 wt% of nano silica, 1.1 wt% of nano clay and 9° of fiber orientation and after preparing and testing five samples average value of tensile strength was obtained about 480 MPa. Also the results showed that the best impact strength obtained from software was 11.35 kJ/m2 and occurred in 4.03 wt% of nano clay, 5 wt% of nano silica and 0° of fiber orientation. The optimization results also showed that tensile and impact strength at optimum values improved up to 6.4% and 203.5% compared to level 1 and 14 and 6.02% and 303.6% compared to level 13 and 14 respectively. In addition, the fracture surface morphologies of the quaternary nano composites were investigated by scanning electron microscopy (SEM).  相似文献   

8.
In this study, processing, morphology and properties of poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) triblock copolymer and clay modified cyanate ester/epoxy hybrid nanocomposites were investigated. The PEO-PPO-PEO triblock copolymer preferentially reaction-induced microphase separate into spherical micelles in the cyanate ester/epoxy matrix. PEO-PPO-PEO was used as both nanostructuring agent for cyanate ester/epoxy blended resin and thus the predominantly intercalated and few exfoliated platelets of were also observed with clay, which successfully reduced the brittleness of the cyanate ester/epoxy blended resin increasing the toughness of designed materials. The stiffness and heat resistance of the neat BCE/EP resin could be retained in the BCE/EP/F68/clay hybrid nanocomposites. The optimum property enhancement was observed in the hybrid nanocomposites containing 5 wt% PEO-PPO-PEO and 3 wt% clay. The thermo/mechanical properties of the hybrid nanocomposites depend on microstructure, dispersion state and the ratio between organic and inorganic modifiers content.  相似文献   

9.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

10.
Metal–polymer hybrid nanocomposites have been prepared from an aqueous solution of polyvinyl alcohol (PVA) and silver nitrate (AgNO3). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with PVA molecule at 60–70 °C over magnetic stirrer. UV–vis analysis, X-ray diffraction studies, transmission electron microscopy, scanning electron microscopy and current–voltage analysis were used to characterize the nanocomposite films prepared. The X-ray diffraction analysis reveals that silver metal is present in face centered cubic (fcc) crystal structure. Average crystallite size of silver nanocrystal is 19 nm, which increases to 22 nm on annealing the film at 150 °C in air. This result is in good agreement with the result obtained from TEM. The UV–vis spectrum shows a single peak at 433 nm, arising from the surface plasmon absorption of silver nanocolloids. This result clearly indicates that silver nanoparticles are embedded in PVA. An improvement of mechanical properties (storage modulus) was also noticed due to a modification of PVA up to 0.5 wt% of silver content. The current–voltage (IV) characteristic of nanocomposite films shows increase in current drawn with increasing Ag-content in the films.  相似文献   

11.
This work developed flame retarded glass fiber reinforced polyamide 6 (FR-GFPA) composites with excellent mechanical properties, thermal stability and flame retardancy using a novel flame retardant, lanthanum hypophosphite (LaHP). The flame-retarded properties of FR-GFPA composites were characterized by limiting oxygen index, Underwriters Laboratories 94 testing and cone calorimeter test. FR-GFPA composite with 20 wt% LaHP reached V-0 rating and a high LOI value (27.5 vol%). The mechanical performance analysis showed that both the storage modulus and tensile strength increased and then decreased with the increase of LaHP loading. For FR-GFPA composite with 15 wt% LaHP loading, the storage modulus was 164% higher than that of glass fiber reinforced polyamide 6 (GFPA). Thermogravimetric analysis (TGA) and char residue characterization showed that the addition of LaHP can promote the formation of compact physical char barrier, reduce the mass loss rate and thus improve the flame retardancy of FR-GFPA composites.  相似文献   

12.
Polyhedral oligomeric silsesquioxane grafting thermally conductive silicon carbide particle (POSS-g-SiCp) fillers, are performed to fabricate highly thermally conductive ultra high molecular weight polyethylene (UHMWPE) composites combining with optimal dielectric properties and excellent thermal stabilities, via mechanical ball milling followed by hot-pressing method. The POSS-g-SiCp/UHMWPE composite with 40 wt% POSS-g-SiCp exhibits relative higher thermal conductivity, lower dielectric constant and more excellent thermal stability, the corresponding thermally conductive coefficient of 1.135 W/mK, the dielectric constant of 3.22, and the 5 wt% thermal weight loss temperature of 423 °C, which holds potential for packaging and thermal management in microelectronic devices. Agari’s semi-empirical model fitting reveals POSS-g-SiCp fillers have strong ability to form continuous thermally conductive networks.  相似文献   

13.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

14.
Aligned Fe3O4@Ag-nanowire (Ag-NW)/poly(vinyl alcohol) (PVA) nanocomposite films are prepared via a magnetic field-assisted method under a low magnetic field (B < 0.1 T) induction. The effects of the mass ratio (MR) of Fe3O4 to Ag-NWs and the Ag-NW content are systematically studied on the composite electrical conductivity (EC). The preferential alignment of Ag-NWs brings about a significant increase in the EC of the oriented composite in the parallel direction along the magnetic field. The optimal MR is determined to be equal to 0.15 at which the random composite has a good EC meanwhile the oriented composite shows a good response to the applied magnetic field. The oriented composite with the 20 wt% Ag-NWs shows a high EC anisotropy of ca. 6.6 and a very high EC of 4500 S/cm via the external magnetic field. In addition, the introduction of Ag-NWs leads to an obvious improvement in the thermal stability of PVA composites.  相似文献   

15.
An actively cooled vascular polymer matrix composite containing 3.0% channel volume fraction retains greater than 90% flexural stiffness when exposed continuously to 325 °C environmental temperature. Non-cooled controls suffered complete structural failure through thermal degradation under the same conditions. Glass–epoxy composites (Tg = 152 °C) manufactured by vacuum assisted resin transfer molding contain microchannel networks of two different architectures optimized for thermal and mechanical performance. Microchannels are fabricated by vaporization of poly(lactide) fibers treated with tin(II) oxalate catalyst that are incorporated into the fiber preform prior to resin infiltration. Flexural modulus, material temperature, and heat removal rates are measured during four-point bending testing as a function of environmental temperature and coolant flow rate. Simulations validate experimental measurements and provide insight into the thermal behavior. Vascular specimens with only 1.5% channel volume fraction centered at the neutral bending axis also retained over 80% flexural stiffness at 325 °C environmental temperature.  相似文献   

16.
《Composites Part A》2007,38(1):132-137
A clay with reactive activity prepared by treatment of natural montmorillonite with Methylene-bis-ortho-chloroaniline (MOCA) was incorporated into polyurethane matrix and a series of PU/clay nanocomposites were obtained by in situ polymerization. The microstructure of the nanocomposites with different content of the clay was examined by atomic force microscopy (AFM). The thermal and mechanical properties of the nanocomposites with different organic clay content were characterized by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). It was found that the moduli and thermal stability of the nanocomposites were improved with augment of clay, especially, for the PU/9 wt% MO-MMT nanocomposite, compared to pure PU, the storage modulus and the loss modulus were increased by about 300% and 667% at −45 °C, respectively.  相似文献   

17.
Bismaleimide–triazine (BT) resins have received a great deal of attention in microelectronics due to its excellent thermal stability and good retention of mechanical properties. Thereafter, developing BT based composites with high mechanical strength, thermal conductivity and dielectric property simultaneously are highly desirable. In this study, one hybrid fiber of Al2O3 nanoparticle (200 nm) supported on polyimide fiber (Al2O3@PI) with core–shell structure was introduced into BT resin to prepare promising Al2O3@PI–BT composite. The results indicated that the resultant composites possessed high Young’s modulus of 4.06 GPa, low dielectric constant (3.38–3.50, 100 kHz) and dielectric loss (0.0102–0.0107, 100 kHz). The Al2O3@PI hybrid film was also conductive to improve thermal stability (Td5% up to 371 °C), in-plane thermal conductivity (increased by 295% compared to that of the pure BT resin). Furthermore, the Al2O3@PI–BT composite were employed to fabricate a printed circuit substrate, on which a frequency “flasher” circuit and electrical components worked well.  相似文献   

18.
Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212 °C for 8 h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20 wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34 GPa. The FMOE increased by 101% and 82% with the addition of 30 wt.% heat treated pine and 20 wt.% heat treated maple, where it reached maximum values of 4.71 GPa and 4.27 GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250 °C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.  相似文献   

19.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

20.
In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号