首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X. Ruan  A. Safari  T. -W. Chou   《Composites Part A》1999,30(12):1435-1444
Composites based upon 3D textile preforms have found broad structural application. This paper presents an analytical methodology for functional composites using piezoceramic fibers in a 3D braided preform. The effective elastic, piezoelectric and dielectric properties of 2-step braided composites with a polymeric matrix have been investigated. In the analytical approach, the effective properties of the braider and axial yarns of the unit cells are determined first using a 3D connectivity model. Then, the effective properties of the 2-step braided composite are predicted using an averaging technique. Results of a numerical example illustrating the variation of elastic, piezoelectric and dielectric constants with the braider yarn angle are provided. Textile preforming technique in general offers the potential of near net shape forming and 3D fiber placement. The present work provides the analytical basis for 3D piezoceramic textile composites.  相似文献   

2.
The recent development of inorganic based composites as low-cost materials in reinforced concrete structural strengthening and precast thin-walled components, requires the creation of models that predict the mechanical behaviour of these materials.Textile Reinforced Mortar (TRM) shows complex stress–strain behaviour in tension derived from the heterogeneity of its constituent materials. This complexity is mainly caused by the formation of several cracks in the inorganic matrix. The multiple cracking leads to a decrease in structural stiffness. Due to the severe conditions of the serviceability limit state in structural elements, the prediction of the stress–strain curve is essential for design and calculation purposes. After checking other models, an empirical nonlinear approach, which is based on the crack control expression included in the Eurocode 2, is proposed in this paper.Following this scope, this paper presents an experimental campaign focused on 31 TRM specimens reinforced with four different reinforcing ratios. The results are analysed and satisfactorily contrasted with the presented non-linear approach.  相似文献   

3.
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2 mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.  相似文献   

4.
In this paper, the formability of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is experimentally investigated. The study involves the forming process of the 3D fabric on two complex moulds, namely tetrahedron and double-dome. The tests are assisted by 3D digital image correlation measurement to have a continuous registration of the fabric local deformation. Moreover, the results of bending tests in warp and weft direction are detailed to enlarge the mechanical properties data set of the 3D reinforcement, necessary for understanding its deformability capacities in forming processes. The elevated bending stiffness of the 3D fabric means that use of a blank-holder during forming is not required. The reinforcement has a good drapability and it is able to form complex shapes without defects (wrinkles and fibre distortions). The collected experimental results represent an important dataset for numerical simulations of any complex shape with the considered 3D fabric composite reinforcement.  相似文献   

5.
3D-woven fabrics incorporate through-thickness reinforcement and can exhibit remarkable inter-laminar properties that aid damage suppression and delay crack propagation. However, distortions in the internal architecture such as yarn waviness can reduce in-plane properties, especially in compression. The degree of yarn waviness present in a 3D woven fabric can be affected by a range of factors including weave parameters and manufacturing-induced distortions such as fabric compaction. This paper presents a thorough analysis of the effect of fabric compaction and yarn waviness on the mechanical properties and failure mechanisms of an angel-interlock fabric in compression. Tests were conducted on coupons moulded to different volume fractions and data compared to previous measurements of local yarn angle. Major findings show the importance of yarn straightness on compressive strength and how this can be affected by optimising moulding thickness. Failure initiation was also found to be heavily influenced by weave style and yarn interlacing.  相似文献   

6.
An area of interest in the automated manufacture of composite components is the prediction in real-time of the deformed shape of a textile reinforcement in 3D space during robotic handling operations. The deformed shape can be used to guide robotic end-effectors to ensure accurate fabric placement and avoid collisions. In this paper, a nonlinear mathematical model using large deflection plate and shell theories is presented. The model is able to predict the 3D deformed shape of limp sheet materials being picked-up by multi robotic grippers for three boundary conditions. The main factors affecting the deformation behaviour of the sheet during the operation are identified and analysed, and the contributions of different energies during deformation are presented in detail. Good agreement is obtained when comparing the solutions of the model with FE simulation results. This study demonstrates the possibility of developing a modelling capability for material on-line response in automatic flexible material handling.  相似文献   

7.
This research studied the flexural behavior of textile reinforced cement-based composites reinforced with 3D fabrics. Three different 3D fabrics were examined, each with a different orientation of the spacer yarns. This work focused on the influences involved in the two plane fabric directions, weft and warp. Plain 2D fabrics (not in cement) and within the cement were also examined for comparison. It was found that the warp direction of the plain fabric has higher tensile strength than the weft direction. On the contrary, when the fabric is in a composite, the weft direction presents improved behavior in flexure due to three mechanisms: the tightening of the warp bundles by the loops, the waviness of the warp yarns, and the angle of the yarns located along the composite thickness to the loading direction. In general, compared with 2D fabrics, 3D fabrics are highly beneficial reinforcements for cement-based composites due to their greater reinforcing efficiency via mechanical anchoring.  相似文献   

8.
An investigation at the unit cell level of the sheared geometry of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is performed by X-ray micro-computed tomography (micro-CT) observations. The aim is to observe, understand and quantify the effect of in-plane shear deformation on the composite reinforcement geometry, at meso-scale (i.e. unit cell level). It was observed that, increasing the shear deformation, Z-yarns maintain unchanged the distance between the yarns and as consequence the yarn cross-section has a reduced variation of width, mainly in the weft direction.Furthermore, the effect of the shear angle on the textile thickness during compression is measured, this being an important parameter after the forming and molding phases of a composite component production. Compression tests and micro-CT measurements of the thickness show similar values and are in agreement with the prediction obtained assuming the theoretical invariance of the volume in the considered range of shear deformations.  相似文献   

9.
In aerospace industry, thicker and more complex composite parts are needed. Multilayered reinforcement is largely used as the traditional method. Recently, three-dimensional (3D) fabrics are developed to replace the multilayered reinforcements in certain applications to increase the performance in thickness direction of part, e.g. interlock structure. Currently, the development of tufting technology can be employed to produce the 3D textile composite reinforcements. The tufting parameters, such as tufting density, tufting length and tufting yarn orientations, can be completely controlled by user. In order to improve the understanding of formability of the tufted 3D fabric during manufacturing, the present work analyzes the preforming behaviours of tufted 3D reinforcement in the hemispherical stamping process. Also the preforming behaviours are compared with the samples of the multilayered forming. The experimental data demonstrated the influence of tufting yarns on the material draw-in, interply sliding, and winkling phenomenon during forming. Furthermore, the orientations of tufting yarn affected the forming results, which leaded to misalignment defect in the zone of strong in-plane shear.  相似文献   

10.
The present paper represents a new analytical method for calculation of the stiffness of three-dimensional four-directional braided composites. In most previous works, the analytical approach had been largely neglected in the favor of the finite element model. Among those who have used the analytical model, the braided preform has been considered as made of one, or three, types of representative unit cells, while microscopic evidence of the microstructure of preforms reveals different configurations of the yarns in the interior, surface and corner regions of a braided preform. This paper presents a Multi-Unit Cell Model in which four kinds of unit cells, namely interior, interior surface, exterior surface and corner unit cells have been introduced as representative cells. Each type of unit cell in a braided composite possesses unique mechanical properties and has been considered as a uni-directional composite. Using rotation matrices, the angle between yarns and longitudinal direction has been incorporated in general coordinates of the model. Finally, using a volume averaging method, the total stiffness of the braided composite is calculated. The results are in good agreement with the available experimental data. The effect of braiding angle on the stiffness of braided composites is also examined.  相似文献   

11.
A multi-scale approach to modelling is optimal for computationally intensive problems of a hierarchical nature such as 3D woven composites. In this paper an approach capable of modelling feature/component scale fabric deformations and defects is proposed. The proposed technique starts with a meso-scale model for predicting the as-woven geometry of a single unit cell using a high fidelity digital element method. The unit cell geometry is then converted into a macro-scale fabric model by geometric reduction then tessellation. On the macro-scale, two and three dimensional approaches to yarn geometry representation are proposed, with an accompanying yarn mechanical model. Each approach is evaluated based on solution accuracy and computational efficiency. The proposed approach is then verified against experimental results on the meso- and macro-scales. The applicability of this modelling technique to larger scale compaction problems is then investigated. The proposed algorithm was found to be accurate and computationally efficient.  相似文献   

12.
This research studied the flexural behavior of cement-based elements reinforced with 3D fabrics. The effects of the through-thickness (Z direction) yarns were examined in terms of four parameters: (i) yarn properties, (ii) varying the composite content of (i.e., coverage by) high-performance aramid yarn, (iii) treatment of the fabric with epoxy, and (iv) 2D and 3D fabric composites were compared. Overall, the 3D fabric composites performed better than the 2D fabric composites, which tended to delaminate. Our results indicate that even though the Z yarns are not oriented in the direction of the applied loads, 3D fabrics still have potential applications as reinforcements for cement-based composites. Indeed, the Z yarns hold the entire fabric together, which leads to improved mechanical anchoring and mechanical properties particularly when the fabric has been treated with epoxy, i.e., to create a stiff reinforcing unit.  相似文献   

13.
This article presents analytical models for predicting large mass impact response and damage in thin-ply composite laminates. Existing models for large mass impact (quasi-static) response are presented and extended to account for damage phenomena observed in thin-ply composites. The most important addition is a set of criteria for initiation and growth of bending induced compressive fibre failure, which has been observed to be extensive in thin ply laminates, while it is rarely observed in conventional laminates. The model predictions are compared to results from previous tests on CFRP laminates with a plain weave made from thin spread tow bands. The experiments seem to confirm the model predictions, but also highlight the need to include the effects of widespread bending induced fibre failure into the structural model.  相似文献   

14.
3D warp interlock fabric can be used as a fibrous reinforcement for composite material. Despite of the numerous research papers dealing with this specific woven structure, few researches were conducted to clearly define this multi-layer fabric. Moreover, in many research papers, unskilled scientists of weaving technology have some difficulty to describe the different components of the 3D warp interlock fabric and sometimes make some confusion between the different architecture. Then, with a lack of a clear definition of these 3D multi-layer fabrics, most of the research papers are conducted on a very limited number of structures such as orthogonal, angle and layer to layer interlock.Thus, based on different definitions proposed by skilled scientists, a new general definition of a 3D warp interlock fabric has been proposed to better describe the position of the several yarns located inside the 3D woven structure. Thanks to this improved definition, we hope that the scientific community will use it in order to better design new architectures and conduct finer research based on these product parameters.  相似文献   

15.
Textile models are often assumed to have homogenous and well defined cross-sections. For these models, the use of a power elliptical cross-sectional shape has been found to be beneficial as different shapes can be created, e.g. lenticular, elliptical or rectangular, with a single function. The cross-sectional area of a power ellipse is usually determined numerically as the analytical determination of the cross-sectional area is not straightforward. This short communication presents an analytical solution for this shape.  相似文献   

16.
Textile composites manufactured using Resin Transfer Modeling (RTM) can offer advantages in some automotive applications including reduction in weight, while being relatively simpler to fabricate than standard laminated composites used for aerospace applications. However, one of the challenges that arise with these textile composite materials is that the mechanical properties are inherently dependent on the local and final (in-situ) architecture of the textile itself as a result of the molding and curing processes. While this provides additional latitude in the composite design process it also necessitates the development of analytical models that can estimate the mechanical properties of a textile composite based on the textile architecture and the properties of the manufactured component.In this paper, an analytical model is developed and its estimations are compared against experimental in-plane engineering properties for composites with various textile architectures. Results from the model are also compared against finite element (FE) based computational results. The microstructures of the 2D triaxially braided composite (2DTBC) studied were extensively characterized. The microstructure properties thus measured were used in the analytical model to estimate the mechanical properties. Uniaxial tension and V-notched rail shear tests were conducted on 2DTBC with different textile architectures. Good agreement between the analytical, computational, and experimental results were observed and are reported here. Furthermore, computational estimations of matrix mechanical properties are limited to the linear elastic range of a representative material volume (unit cell) and coupon data. Full mechanical response of larger 2DTBC structures, albeit of prime interest, is beyond the scope of this work and could be the focus of follow up studies.  相似文献   

17.
Theory of fabric-reinforced viscous fluids   总被引:3,自引:0,他引:3  
Constitutive equation are formulated for flow of fabric-reinforced composite materials which show viscous response at the forming temperature. It is shown that in general the characterization for linear viscous response involves five viscosity coefficients, but this number may be reduced as a result of material symmetry of the fabric. In the case in which the material is a plane sheet, the rheological behaviour is described by a single function of the current angle between the fibre directions. The theory is applied to the analysis of the ‘picture-frame’ experiment, and it is shown that this experiment provides a method of measuring the response function. The effect of symmetry of the fabric architecture is considered, and it is found that for some fabric symmetries the theory allows the possibility of different responses to in-plane shearing in different shearing directions, as has been observed in picture-frame experiments. The general theory for nonlinear viscosity is also formulated, and specialized to the analysis of plane sheets, and in particular to the case of a power law fluid. In this case also, it is shown that the material can be characterized by a single response function of the rate-of deformation and the angle between the fibre directions.  相似文献   

18.
19.
High speed dynamic loadings such as small engine fragments, bird strike, tyre impact or ice debris are a concern for many aeronautical structures, as they can create severe damages raising safety issues. A strategy to develop dedicated mechanisms for energy absorption of high speed dynamic impact debris at sub-component level is therefore proposed by means of several reinforced foam-woven composite structures. Among the tests for evaluating the mechanical performances, dynamic crushing tests were performed on a slice of such reinforced composite structures to evaluate their energy absorption. Using simultaneously load signal and fast camera imaging, the tests were analyzed to provide important informations such as damage mechanisms and displacement-load-energy absorption values. At the end, quantitative criterions are presented in order to distinguish the designs that have a good potential for absorbing shock energy and for getting a better understanding for designing reinforced composite structures.  相似文献   

20.
During the preforming stage in Liquid Composite Molding (LCM), fibrous reinforcements are compacted to obtain the specified fiber volume fraction. Numerous studies have been carried out to understand their compression behaviors. The first objective of this investigation is to study experimentally the influence of the weaving parameters on the compaction behavior of five different 3D Interlock fabrics. In parallel, composite parts were fabricated to perform a microscopic analysis of fabric deformation after compression. The second objective is to provide a model of the experimental results. Since there is no nesting in three-dimensional woven fabrics, the compaction behavior turns out to be easier to predict than for laminates. A model based on experimental observations was devised to connect the compaction behavior with the deformation modes of five fabrics investigated. The good correlation with experiments confirms the assumptions on the main factors governing the compaction and relaxation of 3D Interlock fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号