首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An experimental study is described in this paper dealing with the tension–tension fatigue and failure mechanism of 3D MWK composites with different fiber architectures and material sizes. Macroscopic fracture morphology and SEM micrographs are examined to understand the fatigue damage and failure mechanism. The results show the fatigue properties and failure mechanism of composites can be affected significantly by the fiber architecture and material size. The fatigue life of material A(0°/0°/0°/0°) with small fiber orientation angle is significantly longer than that of material B(+45°/−45°/+45°/−45°). For material A, the fatigue properties of the long composite are better than that of the short one. It is 0° fiber bundles fracture under fatigue stress which cause the material failure and the long composite provides more space for the formation and propagation of local fatigue micro-cracks. However, for material B, the short composites have better fatigue properties. Moreover, the materials show typical ±45° zigzag fatigue fracture and obvious shear behavior. The fatigue cracks for the long composite can be spread more quickly along the fiber/matrix interface due to the fiber bundles realignment.  相似文献   

2.
This paper presents results from an experimental study of the influence of embedded defects created during automated fiber tape placement, on the mechanical properties of carbon/epoxy composites. Two stacking sequences have been examined, [(−45°/+45°)3/−45°] and [90°4/0°3/90°4], in which gaps and overlaps have been introduced during fiber placement. These materials have been cured in an autoclave either with or without a caul plate, then analyzed by ultrasonic C-scan. The microstructures were characterized by scanning electron microscopy. In-plane shear tests were performed on the ±45° laminates and showed that the use of a caul plate does not affect mechanical behavior of plies in the embedded defect region. Compression tests were performed on 0°/90° laminates and in this case the presence of a caul plate is critical during polymerization as it prevents thickness variations and allows defects to heal.  相似文献   

3.
In this work a study about the adaption of the classical laminate theory for fatigue loads is presented. Cycle dependent stiffnesses of single UD 0°, UD 45° and UD 90° plies are implemented in order to calculate the fatigue-induced stiffness decrease of a multidirectional lay-up with the stacking sequence [0°/+45°/−45°/90°/90°/−45°/+45°/0°]. As second input alternative, UD 0°, UD 90° and ±45° plies are used. The calculated cycle-dependent stiffness parameters are compared to experimentally measured fatigue data of the multidirectional lay-up. The experimental test procedure used for the measurement of cycle-dependent stiffness parameters has been published previously. Results show that the experimentally measured stiffness decreases of the multidirectional lay-up can be estimated accurately based on the cyclic unidirectional input parameters.  相似文献   

4.
The effects of interfacial adhesion strength on the damage behavior and energy absorption characteristics of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) short square hollow section (SHS) beam under three point bending loading was investigated. An Al SHS beam was wrapped by CFRP with a [0°/+45°/90°/−45°]n (n = 1 or 2) stacking sequence, and four gradations of interfacial adhesion strength were caused by physical or chemical changes of the Al adherend with different mechanical abrasion and optimal Argon plasma treatment. A different level of appropriate interfacial adhesion strength existed for each hybrid specimen depending on the CFRP laminate thickness to obtain the highest energy absorption capability, and this was verified by detailed observation of the failure mechanism of the hybrid specimen. The specific energy absorbed (SEA) was improved by up to 57.2% in the Al/CFRP [0°/+45°/90°/−45°]2 SHS beam compared to the Al SHS beam without compromising the crush force efficiency (CFE).  相似文献   

5.
The present experimental study deals with the repeated transverse impact effect on the burst pressure of composite pressure vessels. Filament winding method is used to produce the vessels. Glass fiber reinforced (GFR) vessels are manufactured by using E-glass and epoxy resin. Composite pressure vessel was manufactured from fibers oriented [+55°/−55°/+55°/−55]2s and the impact energies were chosen as 10, 15, 20, 25, 30 J for empty vessel during the impact tests. In addition, 10, 15, 20, 25 J for water filled conditions at 25 and 70 °C. The transverse impact load was applied in single and three times repeated form. The results show that when the impact load and water temperature increases, the burst pressure decreases.  相似文献   

6.
Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different angles between the loading vector and fiber direction were carried out under scanning electron microscopy (SEM) in situ observation. The damage mechanisms as well as stress strain curves were obtained in the experiments. It was shown that the compressive strength of composites drastically reduces when the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure. With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational results correspond well to the experimental observations.  相似文献   

7.
To get a strong, stiff and weight efficient cylindrical shell, a novel carbon fiber reinforced corrugated lattice truss-core sandwich cylinder (LTSC) was designed and fabricated. The core is made up of orthogonal corrugated trusses and manufactured by mould pressing method. The LTSC is fabricated by filament winding and co-curing method. The face sheets have layups of [0°/30°/−30°/−30°/30°/0°] to improve the fundamental frequency as it is controlled by the circumferential stiffness. In end-free vibration the fundamental frequency of the LTSC is 112.18 Hz, higher than the referenced quasi-isotropic Isogrid-core sandwich cylinder. Determined by the skin fracture, the compression strength of the LTSC is 328.03 kN, stronger than the referenced Isogrid-core sandwich cylinder failed at rib buckling and the post-failure deformation is ductile. According to the optimization scheme jointly constrained by the strength and the fundamental frequency, an ultra-light and strong cylinder with high fundamental frequency was successfully fabricated.  相似文献   

8.
Textile composites are well known for their excellent through thickness properties and impact resistance. In this study, a representative unit cell model of a triaxial braided composite is developed based on the composite fiber volume ratio, specimen thickness and microscopic image analysis. A meso-scale finite element (FE) mesh is generated based on the detailed unit cell dimensions and fiber bundle geometry parameters. The fiber bundles are modeled as unidirectional fiber reinforced composites. A micromechanical finite element model was developed to predict the elastic and strength material properties of each unidirectional composite by imposing correct boundary conditions that can simulate the actual deformation within the braided composite. These details are then applied in the meso-mechanical finite element model for a 0°/+60°/−60° triaxially braided T700s/E862 carbon/epoxy composite. Model correlations are conducted by comparing numerical predicted and experimental measured axial tension and transverse tension response of a straight-sided, single-layer (one ply thick) coupon. By applying a periodic boundary condition in the loading direction, the meso model captures the local damage initiation and global failure behavior, as well as the periodic free-edge warping effect. The failure mechanisms are studied using the field damage initiation contours and local stress history. The influence of free-edge effect on the failure behaviors is investigated. The numerical study results reveal that this meso model is capable of predicting free-edge effect and allows identification of its impact on the composite response.  相似文献   

9.
从宏、微观的角度研究了碳纤维增强聚酰亚胺树脂基MT300/KH420复合材料的高温力学性能,重点揭示了MT300/KH420复合材料[0°]14和[±45°/0°/90°/+45°/0°2]s层合板在常温~500℃的弯曲性能变化规律。研究表明:MT300/KH420复合材料高温力学性能优异,[0°]14层合板在420℃的弯曲强度保持在51%以上,弯曲模量在500℃以内变化很小。[0°]14层合板在常温下断口粗糙,且贯穿厚度,表现为脆性破坏;随温度升高,树脂流动性增强,呈现出黏弹效应,破坏逐渐集中在加载点处,在500℃,部分树脂热解,纤维束脱离基体并氧化。[±45°/0°/90°/+45°/0°2]s层合板高温弯曲性能较为稳定,主要破坏为上、下表面沿45°方向开裂,并伴有层间分离,在500℃出现严重分层破坏;相比于受基体控制的层合板弯曲性能,温度对受纤维控制的层合板弯曲性能影响较小。  相似文献   

10.
This paper presents the results of a study on glass-fibre-reinforced polypropylene composite in which the fatigue damage was investigated in terms of residual stiffness and temperature rise. Thermographic and acoustic emission techniques were used to aid the interpretation the fatigue damage mechanisms. Different laminates were tested. For one series, all the layers have one of the two fibre directions oriented with the axis of the plate. For the other two series layer distribution was obtained with the following laminate orientation in respect to the axis of the sheet: +45°/0°/−45°/0°/+45°/0°/−45° and +30°/−30°/+30°/0°/+30°/−30°/+30°. It was possible to conclude that the residual stiffness and temperature rise can be used to predict final failure of a structure and/or component. With thermographic technique it is possible to obtain temperature maps and the precise site where the failure will occur.  相似文献   

11.
Composites are usually brittle materials and have low impact properties. Structural dimensions, stacking sequence, ply materials, ply thicknesses and ply angles are standard variables that influence composite‘s performance against impact loads. Stacking sequence in hybrid laminates affects the failure and impact resistance. Failure mechanisms at the low-velocity impact of a rigid object in hybrid laminates are complex, and the subsurface damage in a composite laminate cannot be detected directly. However, various simulation platforms make it easy to see the impact damage between the plies of laminate. This paper numerically investigated the effect of stack sequence and hybridization of two fiber types against low-velocity impact. The current study adopted four-layer composite laminates of carbon and glass fiber layers with a stacking plan [C/C/C/C], [C/G/C/G] and [G/C/G/C], having lay-up angles as [0°/45°/−45°/90°]. Keeping the impactor mass and the incident velocity constant, the laminates were subjected to low-velocity impact. The damage contours for a failure mode were recorded and compared at the ply level. The numerical study resulted in impact imitations showing comparisons of the damage contours using Hashin failure criteria. Hybrid laminates display better performance in absorbing impact energies; however, hybrid laminates experienced more subsurface damage due to more impact energy absorption.  相似文献   

12.
《Composites Part A》2005,36(7):923-933
In this study, a general stress analysis is developed for thick or thin multi-layered composite cylinders under hygrothermal loadings. The layers are oriented symmetrically and antisymmetrically for [0°/90°]2, [30°/−30°]2, [45°/−45°]2 and [60°/−60°]2 orientations. The solution is carried out on composite cylinders for plane-strain, open end and closed end conditions. Uniform and parabolic temperature distributions are chosen for the thermal loads. All the integration constants are found from the radial stress and displacement in the normal direction of layers. The hygrothermal and other mechanical properties are measured on a glass-epoxy composite layer. Some analytical solutions are compared with the finite element solutions, in which commercial software ANSYS 7.0 is utilized, and close results are obtained between them.  相似文献   

13.
《Composites Science and Technology》2006,66(11-12):1793-1802
The tensile properties and thermal expansion behaviors of continuous molybdenum fiber reinforced aluminum matrix composites (Mof/Al) have been studied. The Mof/Al composites containing different volume percents of Mo fibers were processed by diffusion bonding. The strengths of unidirectional Mof/Al composites were close to the rule-of-mixtures. The strengths of 0°/90° dual-directional composites increased with fiber content, while those of 45°/135° composites remained relatively low. The coefficients of thermal expansion (CTEs) of the composites decreased as the fiber content increased, close to the values of Mo fibers. With increasing temperature, the CTEs of unidirectional composites increased, while those of dual-directional composites decreased due to large accumulated thermal stresses. The CTEs of 45°/135° composites were lower than those of 0°/90° composites because of contraction effect. At temperatures above 250 °C, the CTEs of the dual-directional composites gradually increased due to matrix yielding and interfacial decohesion.  相似文献   

14.
针对连续石墨纤维增强铝基(CF/Al)复合材料,采用三种纤维排布方式的代表体积单元(RVE)建立了其细观力学有限元模型,采用准静态拉伸试验与数值模拟结合的方法,研究了其在轴向拉伸载荷下的渐进损伤与断裂力学行为。结果表明,采用基体合金和纤维原位力学性能建立的细观力学有限元模型,对轴向拉伸弹性模量和极限强度的计算结果与实验结果吻合良好,而断裂应变计算值较实验结果偏低。轴向拉伸变形中首先出现界面和基体合金损伤现象,随应变增加界面发生失效并诱发基体合金的局部失效,最后复合材料因纤维发生失效而破坏,从而出现界面脱粘后纤维拔出与基体合金撕裂共存的微观形貌。细观力学有限元分析结果表明,在复合材料制备后纤维性能衰减而强度较低条件下,改变界面强度和刚度对复合材料轴向拉伸弹塑性力学行为的影响较小,复合材料中纤维强度水平是决定该复合材料轴向拉伸力学性能的主要因素。  相似文献   

15.
Multilayered-connected biaxial weft knitted (MBWK) fabric reinforced composites have excellent tensile properties. Three kinds of different fabrics reinforced composites are used in this paper, which are three-layer-connected biaxial weft knitted fabric, four-layer-connected biaxial weft knitted fabric and five-layer-connected biaxial weft knitted fabric. The tensile properties of MBWK fabrics reinforced composites are studied with 0° and 90° directional testing with different carbon fiber volume fractions. The results show that the carbon fiber volume fraction has significant effect on tensile strength of MBWK fabrics reinforced composites. The linear correlation between tensile strength and carbon fiber volume fraction is very well in the certain range, and failure analyses are also available by means of sample debris examination to identify the failure modes and the fracture surfaces.  相似文献   

16.
This paper experimentally investigates the damage characteristics of two stacking sequenced ([452/02/−452/902]s, [302/02/−302/902]s) carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Characteristics of the damage are analyzed using visual inspection, image processing, ultrasonic scanning and scanning electron microscope. The mechanical properties of post-lightning specimens are then studied. Observations show that as the lightning strike is intensified, an enlarged resin pyrolized area appears majorly along the weft orientation while the delamination region extends equally to both of the warp and the weft direction. The resin/fiber interfacial bonding is severely damaged by a thermal–mechanical effect due to lightning strike infliction. Mechanical testing further shows that the stacking sequence can influence the failure significantly. Compared with prepreg taped material, the restrained damage area due to special designed stacking sequence, lamina thickness and the weft nylon binder make the woven fabric reinforcement a good choice for the fabrication of lightning protection structures.  相似文献   

17.
In this work, we analyze the influence of different fiber surface treatments on the mechanical properties of plain weave composites. The reinforcement is a glass fibers fabric and the matrix is an acrylic polymer. Until very recently, this thermoplastic polymer family was not used in composite industry. It is therefore necessary to study if the existing fiber surface treatments are suitable for acrylic resins or if new ones have to be found. At the macroscale, composite materials corresponding to different fiber surface treatments were characterized with: (i) monotonic in-plane shear tests and (ii) heat-build up fatigue measurements on specimens with ±45° fiber orientations with respect to the tensile force. At the mesoscale (fabric scale), the development of damage was experimentally analyzed from (i) 3-D DIC (Digital Image Correlation) full-field strain measurements with spatial resolution smaller than the textile repeating unit and (ii) X-ray microtomography. We show that the analyzed composite materials exhibit linear viscoelastic behavior until a given stress threshold above which damage develops in the material. It was also found that the application on the fibers of a coupling agent specifically developed for promoting the bond between glass fibers and acrylic resins improves the composite mechanical properties, in particular the fatigue properties.  相似文献   

18.
Three different architectures of 3D carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) were tested in quasi-static uniaxial tension. Mechanical tests (tensile in on-axis of warp and weft directions as well as 45° off-axis) were carried out with the aim to study the loading direction sensitivity of these 3D woven composites. The z-binder architecture (the through-thickness reinforcement) has an effect on void content, directional fibre volume fraction, mechanical properties (on-axis and off-axis), failure mechanisms, energy absorption and fibre rotation angle in off-axis tested specimens. Out of all the examined architectures, 3D orthogonal woven composites (ORT) demonstrated a superior behaviour, especially when they were tested in 45° off-axis direction, indicated by high strain to failure (∼23%) and high translaminar energy absorption (∼40 MJ/m3). The z-binder yarns in ORT architecture suppress the localised damage and allow larger fibre rotation during the fibre “scissoring motion” that enables further strain to be sustained by the in-plane fabric layers during off-axis loading.  相似文献   

19.
The cement-based composites reinforced with cellulosic fibers isolated from rice straw were fabricated by a slurry vacuum de-watering technique. The physical structures and mechanical properties of the composites with fiber contents ranging from 2% to 16% by weight (wt.%) were investigated. Moreover, the composites reinforced with bamboo cellulosic fibers and the control cement paste, sample without cellulosic fibers, were also fabricated as reference materials. As a result, the cement-based composites reinforced by cellulosic fibers showed a remarkable improvement in the mechanical properties. The measurements of the flexural strength and the fracture toughness of the optimal sample were found to be increased by 24.3% and 45 times, respectively. The bulk density of the composites was decreased by 12.4–37.3% as a result of the introduction of cellulosic fibers. Additionally, the field emission scanning electron microscope (FSEM) observations and energy dispersive spectroscopy (EDS) analyses revealed that the hydration products of Portland cement migrated to the fiber lumens, resulting in mineralizing the cellulosic fibers and decreasing the fracture toughness of the composites.  相似文献   

20.
A Tyranno ZMI fiber/TiSi2–Si matrix composite was fabricated via melt infiltration (MI) of a Si–16at%Ti alloy at 1375 °C under vacuum. The Si–Ti alloy was used as an infiltrant to conduct MI processing below 1400 °C and inhibit the strength degradation of the amorphous SiC fibers. The alloy matrix formed was dense and comprised primarily of TiSi2–Si eutectic structures. The TiSi2–Si matrix composite melt-infiltrated at 1375 °C showed a pseudo-plastic tensile stress–strain behavior followed by final fracture at ∼290 MPa and ∼0.9% strain. When the MI temperature was increased to 1450 °C, however, substantial reduction in the stiffness and ultimate strength occurred under tensile loading. Microstructural observations revealed that these degradations were attributed to the damages that occurred on the reinforcing fibers and pyrolytic carbon interfaces during the MI process. The present experimental results clearly demonstrated the effectiveness of the low-temperature MI process in strengthening Tyranno ZMI fiber composites and reducing the processing cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号