首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ballistic Penetration of Dyneema Fiber Laminate   总被引:1,自引:0,他引:1  
UHMWPE fiber (Dyneema) reinforced composites are an important class of materials for armors.These materials provide superior ballistic performance to the armor, such as the military armor systems requiring a reduction in back-armor effects or a substrate for hardened facings of steet or ceramic. The reported work characterized the ballistic impact and mechanical performance of Dyneema fiber in composite laminates. The capability of the laminate to absorb ballistic impact energy was influenced by the impact velocity and the laminate areal density. Two kinds of penetration were compared and a two-step model for the penetration was proposed.  相似文献   

2.
The use of light weight armor against ballistic threats is very important for increasing mobility and survivability. This paper describes ballistic performance of an E-glass/phenolic composite as a function of laminate thickness and projectile impact velocity using mild steel core projectile. The results show that there is a nonlinear relationship between the energy absorption and laminate thickness. The effect of thickness and velocity on energy absorption in the laminates has been explained in terms of interaction time between target and projectile. It is also observed that deformation of the projectile is more dependent on the target thickness than the strike velocity. Changes in failure mechanisms with change in target thickness are also described.  相似文献   

3.
The high velocity impact response of composite laminated plates has been experimentally investigated using a nitrogen gas gun. Tests were undertaken on sandwich structures based on Kevlar-29 fiber/epoxy resin with different stacking sequence of 6061-T6 Al plates. Impact testing was conducted using cylindrical shape of 7.62 mm diameter steel projectile at a range of velocities (180–400 m/s) were investigated to achieve complete perforation of the target. The numerical parametric study of ballistic impact caused by same conditions in experimental work is undertaken to predict the ballistic limit velocity, energy absorbed by the target and comparison between simulation by using ANSYS Autodyn 3D v.12 software and experimental work and study the effects of shape of the projectile with different (4, 8 and 12 mm) thicknesses on ballistic limit velocity. The sequence of Al plate position (front, middle and back) inside laminate plates of composite specimen was also studied. The Al back stacking sequence plate for overall results obtained was the optimum structure to resist the impact loading.The results obtained hereby are in good agreement with the experimental (maximum error of 3.64%) data where it has been shown that these novel sandwich structures exhibit excellent energy absorbing characteristics under high velocity impact loading conditions. Hence it is considered suitable for applications of armor system.  相似文献   

4.
The material model for a multi-walled carbon nanotube (MWCNT) reinforced poly-vinyl-ester-epoxy matrix composite material (carbon nanotube reinforced composite mats, in the following) developed in our recent work (M. Grujicic et al. submitted), has been used in the present work within a transient non-linear dynamics analysis to carry out design optimization of a hybrid polymer-matrix composite armor for the ballistic performance with respect to the impact by a fragment simulating projectile (FSP). The armor is constructed from E-glass continuous-fiber poly-vinyl-ester-epoxy matrix composite laminas interlaced with the carbon nanotube reinforced composite mats. Different designs of the hybrid armor are obtained by varying the location and the thickness of the carbon nanotube reinforced composite mats. The results obtained indicate that at a fixed thickness of the armor, both the position and the thickness of the carbon nanotube reinforced composite mats affect the ballistic performance of the armor. Specifically, it is found that the best performance of the armor is obtained when thicker carbon nanotube reinforced composite mats are placed near the front armor face, the face which is struck by the projectile. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the lamina/met and laminate/air interfaces.  相似文献   

5.
The objective of this paper is to study the vibrational damping characteristics during medium velocity impact of nanoclay filled glass fiber reinforced epoxy hybrid laminates. A series of laminates with varying degree of nanoclay concentration (0–5 wt.%) and fiber weight fraction (25–75 wt.%) were prepared by vacuum assisted resin infusion molding (VARIM) method. The laminates were subjected to medium velocity projectile impact using in-house built gas gun set-up and the ballistic limit of laminates series was determined. The result indicated that during impact, the laminate undergoes vibrational damping. This damping property is a function of fiber weight fraction and orientation, nanoclay concentration and nanocomposite structure. A 42% increase of ballistic limit was observed for 5 wt.% nanoclay filled hybrid (50 wt.% fiber) when compared with unfilled composite. Structural and modal analysis of hybrids showed that the increased ballistic limit of nanoclay filled hybrids is due to the nanocomposite structure and improved damping and fracture properties.  相似文献   

6.
粘结层性能对陶瓷复合装甲抗多发打击性能有重要影响。建立了研究粘结层和多发打击的数值模拟方法,解决了传统方法不能模拟“脱粘”和多发打击的问题。基于文献弹道试验,研究了环氧树脂和聚氨酯两种粘结层材料及其厚度对陶瓷/铝合金复合装甲抗7.62mm 穿甲弹单发和两发打击性能的影响。结果表明:单发打击的数值模拟可不建粘结层,而多发打击应采用建粘结层的方法;抗单发打击时,粘结层越薄,极限速度越大;抗多发打击时,陶瓷复合装甲应采用聚氨酯粘结层,且其抗两发打击的较优厚度约为0.40mm。  相似文献   

7.
具有导电各向异性的高分子复合材料(ACPCs)在场发射装置及传感器设计领域具有重要应用。常规的ACPCs很难获得超大导电各向异性系数,且力学性能有限。本文采用碳纤维(CF)宽展、表面浸润与树脂复合一体化超薄热塑性单向带制备方法,制备厚度为0.04 mm和0.1 mm的CF增强聚醚醚酮(CF/PEEK)复合材料单向带,以PEEK纤维为纬线制备CF/PEEK复合材料单向编织布,采用热成型工艺制备CF/PEEK复合材料单向层合板。利用数字万用表和霍尔效应系统测试层合板面内及厚度方向的电阻率和面内的电子迁移率;采用超景深显微镜观察CF/PEEK复合材料单向层合板面内和厚度方向的纤维排列形貌。结果表明,超薄CF/PEEK复合材料单向层合板面内(纤维方向与横向)导电率之比高达377,而面内横向和厚度方向的导电率之比接近1,表明CF/PEEK复合材料获得了良好的横观各向同性;超薄化CF/PEEK复合材料的面内电子迁移行为同样具有巨大的各向异性,这一结果为CF/PEEK复合材料在场发射器件、传感器设计及其灵敏度调控方面提供了实验基础。   相似文献   

8.
根据防护要求和防护机制,设计了一种C/C-SiC陶瓷/铝基复合泡沫复合装甲。在确保复合装甲面密度为44 kg/m2的前提下,以弹击后剩余弯曲强度为评价标准,以陶瓷板布置位置、各组成层厚度、泡沫金属中泡沫孔径尺寸为研究因素,设计了三因素三水平的正交模拟优化方案,利用有限元软件ABAQUS模拟了子弹侵彻陶瓷靶板的过程及弹击损伤后复合装甲的弯曲实验过程,预测了剩余弯曲强度,并进行了结构优化。根据数值模拟结果制备陶瓷复合装甲试样,进行实弹打靶和弯曲实验以验证复合装甲试样剩余弯曲强度。结果表明,以MIL-A-46103E Ⅲ类2A级为防护标准,剩余弯曲强度最高的陶瓷复合装甲最优化结构形式为:陶瓷板厚度12 mm、陶瓷板做防弹面板、Al基复合泡沫孔径为4 mm+10 mm的混合;对剩余弯曲强度的主次影响因素排序为:陶瓷板厚度>陶瓷板布置位置>Al基复合泡沫孔径。  相似文献   

9.
为了协同提高碳纤维/环氧树脂(CF/EP)复合材料的电性能和力学性能,采用碳纤维丝束展宽、浸润一体化的工艺方法,将12K CF展宽预浸制备成厚度分别为0.02 mm、0.03 mm、0.08 mm、0.10 mm的CF/EP预浸料及其单向层合板,分析测试了微观结构尺度对CF/EP复合材料层合板电阻率、电阻率随温度及在拉伸载荷作用下响应的影响机制。结果表明,随着CF/EP预浸料厚度从0.10 mm减小到0.02 mm,CF/EP复合材料单向层合板中大尺度树脂富集区所占比例明显减小,厚度方向的电阻率从151.3 Ω·cm减小到32.1 Ω·cm,导电性能提高了约5倍;随着温度升高,CF/EP复合材料层合板电阻率逐步下降,厚预浸料层合板沿厚度方向电阻率的下降速率高于薄预浸料层合板;在载荷作用下由CF/EP薄预浸料制成的CF/EP复合材料层合板的电阻率具有较高的稳定性,表明预浸料薄层化有助于提高CF/EP复合材料抵抗载荷作用的能力,从而获得较高的力学性能和电性能。实验结果为CF/EP复合材料结构-功能一体化设计提供了基础。   相似文献   

10.
铺层混杂对复合材料层压板侵彻性能的影响   总被引:1,自引:0,他引:1  
本文利用MTS和冲击侵彻测试装置,研究了由芳香族聚酰胺纤维、高强聚乙烯醇纤维制成的织物通过不同铺层方式与酚醛/PVB树脂复合的层压板的准静态和冲击侵彻性能。结果表明,芳香族聚酰胺织物层的加入能显著提高高强维纶织物树脂复合材料层压板的准静态侵彻刚度。随着芳纶混杂体积分数的提高,铺层混杂复合材料层压板的准静态侵彻阻力、穿孔能量(或单位面密度穿孔能量)将随之增加。从防护装具性能/重量比和性能/价格比的角度考虑,在芳香族聚酰胺与高强聚乙烯醇织物铺层混杂复合材料层压板中,高强聚乙烯醇纤维混杂体积分数可以确定为20%左右。  相似文献   

11.
为研究层间混杂复合材料装甲板的防弹性能及其防弹机制,采用钢芯弹侵彻层间混杂复合材料装甲板。以超高分子量聚乙烯(Ultra high molecular weight polyethylene,UHMWPE)纤维、对位芳香族聚酰胺纤维作增强纤维,水性聚氨酯(Waterborne Polyurethane,WPU)树脂和环氧树脂(Epoxy resin,EP)作基体,采用热压工艺制备单向(Unidirectional,UD)结构的层间混杂复合材料装甲板。研究混杂比例、防弹面和树脂基体对混杂复合材料装甲板防弹性能的影响以及弹击后混杂复合材料装甲板的破坏形貌,分析混杂复合材料装甲板的防弹机制,并对复合材料装甲板的破坏机制进行了分析。结果表明:混杂复合材料装甲板的防弹性能优于其任一单一纤维复合材料装甲板;WPU的防弹性能要优于环氧树脂;以UHMWPE纤维复合材料充当防弹面时,混杂复合材料装甲板具有更好的防弹性能;纤维拉伸变形和装甲板分层是纤维复合材料装甲板主要的吸能方式。   相似文献   

12.
为探讨结构形式对舰船舷侧复合装甲结构抗穿甲性能的影响,采用均质钢板前置和后置复合材料板分别模拟舰船舷侧外设和内设复合装甲结构,结合低速弹道冲击实验,分析和比较了两种结构形式组合靶板的穿甲破坏模式和抗弹吸能能力。在此基础上,得到了球头弹穿透后置组合靶板的剩余速度理论预测公式,并与试验结果进行了比较。结果表明,两种组合靶板中复合装甲板破坏模式的差异主要体现在迎弹面纤维剪切断裂的程度,而均质钢板则由于复合装甲板的影响,呈现出完全不同的破坏模式;后置组合靶板的抗弹吸能能力要大于前置组合靶板;将弹丸穿透后置组合靶板的剩余速度理论预测值与实验结果进行比较,两者吻合较好。  相似文献   

13.
The ballistic impact behavior of hybrid composite laminates synthesized for armor protection was investigated. The hybrid materials, which consist of layers of aluminum 5086-H32 alloy, Kevlar® 49 fibers impregnated with shear thickening fluid (STF) and epoxy resin were produced in different configurations using hand lay-up technique. The hybrid materials were impacted by projectiles (ammunitions of 150 g power-point) fired from a rifle Remington 7600 caliber 270 Winchester to strike the target at an average impact velocity and impact energy of 871 m/s and 3687 J, respectively. The roles of the various components of the hybrid materials in resisting projectile penetration were evaluated in order to determine their effects on the overall ballistic performance of the hybrid laminates. The effects of hybrid material configuration on energy dissipation during ballistic impacts were investigated in order to determine a configuration with high performance for application as protective armor. The energy dissipation capability of the hybrid composite targets was compared with the initial impact energy of low caliber weapons (according to NATO standards) in order to determinate the protection level achieved by the developed hybrid laminates. Deformation analysis and penetration behavior of the targets were studied in different stages; the initial (on target front faces), intermediate (cross-section), and final stages (target rear layers). The influence of target thickness on the ballistic impact response of the laminates were analyzed. Differences in ballistic behavior were observed for samples containing Kevlar® impregnated with STF and those containing no STF. Finally, mechanisms of failure were investigated using scanning electron microscopic examination of the perforations.  相似文献   

14.
Although advanced lightweight composite based armors are available, high hardness steels in military vehicles are often used to provide ballistic protection at a relatively low cost and is an interesting material due to its widespread usage in vehicle structure. In this study, ballistic limit of 500 HB armor steel was determined against 7.62 mm 54R B32 API hardened steel core ammunition. Lagrange and smoothed particle hydrodynamics (SPH) simulations were carried out using 3D model of bullet and high hardness armor target. Perforation tests on 9 and 20 mm thickness armor were performed to validate simulation methodology. Also material tests were performed for armor steel and ammunition hardened steel core to develop Johnson–Cook constitutive relations for both strength and failure models. Finally, results from 3D numerical simulations with detailed models of bullet and target were compared with experiments. The study indicates that the ballistic limit can be quantitatively well predicted independent of chosen simulation methodology, but qualitatively some differences are seen during perforation and fragmentation. As shown in results, good agreement between Ls-Dyna simulations and experimental data was achieved by Lagrange formulation with the full bullet model.  相似文献   

15.
In the present study, experimental and analytical investigations for the behavior of E-glass fiber reinforced composite hybridized with a layer of Kevlar 29 fiber, under high velocity impact, were performed. The experimental work includes the placement of the Kevlar layer at four different locations to verify the effects of the stacking sequence on the impact behavior. Three different projectile geometries, namely, flat-ended, hemispherical and conical were used. The experimental results reveal that hybridization improves the laminates performance under dynamic penetration. The results also indicate that the laminates response was found to be highly sensitive to the projectile geometry. In the case of analytical modeling, two energy models were conducted to calculate the projectile residual velocities. The results obtained from the two models were compared with those obtained experimentally and some conclusions were drawn.  相似文献   

16.
《Composites Part A》2000,31(8):773-784
The application of gradient design concept in armors offers possibilities in the reduction of weight and cost without significant reduction of ballistic resistance. Experimental results of composite backed plates consisting of layers of ceramic spheres embedded in epoxy showed that a ballistic limit of 3000 ft/s (1000 m/s) can be achieved, as shown in Fig. 1, without weight penalty compared to solid ceramic tiles. The ceramic sphere facing also provides the feasibility for flexible armor manufacturing. The design of such materials includes a plethora of parameters. In order to develop a precise methodology for the optimization of gradient design composite armors, an improved understanding of the relative significance of the design parameters must be developed. One way to study the relative significance of these parameters is through computational modeling. Computational limitations impose compromises in the modeling of both geometry and material behavior. Two types of models are discussed: (a) an approximate fiber/epoxy two-phase model for the backing; and (b) a damage-based, rate-dependent model for the ceramic spheres embedded in the epoxy. The development of a library of fiber architectures based on the unit cell has been initiated, which will open the possibility of the structural optimization along with simulation of the high velocity impact phenomena of advanced composites.  相似文献   

17.
采用环状对苯二甲酸丁二醇酯(CBT)预浸料,利用真空袋辅助热压工艺制备了玻璃纤维机织布-碳纤维机织布/聚环状对苯二甲酸丁二醇酯(GF-CF/PCBT)混杂复合材料层合板。利用双悬臂梁(DCB)和三点端部开口弯曲(3ENF)试验对连续纤维增强PCBT复合材料层合板的层间强度做出评估。同时,利用低速冲击试验结合Abaqus/Explicit有限元仿真重点考察了混杂纤维增强PCBT复合材料层合板的低速冲击性能。试验结果表明:尽管CF/PCBT复合材料层合板具有优异的层间性能,当冲击能量为114.3J时,由于CF自身的脆性,CF/PCBT复合材料层合板被完全穿透,而GF-CF/PCBT混杂复合材料层合板只在表面形成凹痕。与纯CF增强PCBT复合材料层合板相比,铺层形式为[CF/GF/CF]25的GF-CF/PCBT混杂复合材料层合板的抗冲击损伤能力提高2倍。仿真得到的云图显示,冲击引起的应力在CF中的分布区域要明显大于在GF中的分布区域。  相似文献   

18.
This paper presents the influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene (UHMWPE) composite laminate. UHMWPE composite laminates, reinforced by three kinds of fabric structures, unidirectional prepreg, 2D plain-woven and 3D single-ply orthogonal woven fabrics, were fabricated via hot pressing curing process. Through a series of standard ballistic tests, we demonstrated that unidirectional composite laminates exhibit higher ballistic impact velocity and absorbed energy capacity compared to others. A bi-linear relationship was found between the ballistic limit velocity and specimen thickness. Furthermore, the dominant failure mechanisms of unidirectional composite laminates were identified to be plugging and hole friction for thin laminates, whereas delamination, fiber tension and bulging for thick ones.  相似文献   

19.
《Composites Part A》2001,32(8):1133-1142
The use of multi-functional integral armor is of current interest in armored vehicles and military carriers. In the present study, thick-section laminated composites and multi-layered integrated composites have been processed/manufactured with the aim of providing multi-functionality including easy reparability, quick deployment, enhanced ballistic damage and fire protection, as well as lightweight advantages. The design of an integral armor utilizes a combination of thick-section structural composite, ceramic tiles, resilient rubber, fire retardant laminate liner and a composite durability cover. Processing techniques such as automated fiber placement and/or autoclave molding are traditionally used to process dissimilar multi-layered structure, but prove to be expensive.This work focuses on emerging cost-effective liquid molding processes such as vacuum assisted resin transfer/infusion molding (VARTM) for the production of thick-section and integral armor parts (up to 50 mm thick). While thick-section composites have applications in a variety of structures including armored vehicles, marine bodies, civil infrastructure, etc. in the present work they refer to the structural laminate within the integral armor. The processing steps of thick-section composite panels and integral armor have been presented. The integrity of the interfaces has been evaluated through scanning electron microscopy (SEM). Representative results on static and dynamic response (high strain rate, HSR and ballistic impact) of the VARTM processed thick-section composite panels are presented. Wherever applicable, comparisons are made to conventional closed-mold resin transfer molding (CMRTM). Process sensing by way of flow and cure monitoring of the resin in the fiber perform has been conducted using embedded direct current (DC)-based sensors in the thick-section preform and integral armor interfaces. The feasibility of cost-effective VARTM for producing thick-section composites and integral armor has been demonstrated.  相似文献   

20.
为了研究玻璃纤维-不锈钢网混杂增强环氧树脂层合板在球形弹高速斜冲击下的损伤特性,利用一级气炮对2 mm厚度的玻璃纤维增强环氧树脂复合材料层合板和含一层、三层304不锈钢网的玻璃纤维-不锈钢网混杂增强环氧树脂层合板进行倾角为30°的冲击实验,以揭示304不锈钢网对层合板弹道极限和能量吸收的影响规律,并分析层合板损伤特征及其机理。通过实验发现,含有三层不锈钢网层合板的弹道极限最高,而不含不锈钢网层合板和含一层不锈钢网层合板的弹道极限速度接近。层合板吸收的能量随着弹体速度增加呈现出先增加后趋于平稳,然后急剧上升的趋势。层合板损伤模式为基体开裂和破碎、分层、不锈钢丝拉伸断裂、纤维拉伸断裂和剪切断裂。层合板分层损伤面积随弹体速度增大先增大后减小,最后趋于稳定。当弹体速度较低时,层合板主要发生纤维拉伸断裂、基体开裂、层间有分层损伤产生。随着弹体速度的增大,层合板正面纤维逐渐发生压剪断裂、基体破碎,背面纤维发生严重的拉伸撕裂。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号