首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
This paper presents an experimental study examining the interfacial behavior between a steel substrate and carbon fiber reinforced polymer (CFRP) sheets bonded with hybrid epoxy-silyl modified polymer (SMP) adhesives. The epoxy adhesive has high modulus and strength characteristics, while the SMP adhesive possesses a low modulus with permanent elastic nature. The hypothesis tested is that a combination of these two distinct materials can alleviate interfacial stresses along the bond line with maintaining adequate strength. Two types of double-lap tension tests are conducted to evaluate the bond-capacity of the epoxy and SMP adhesives and to study the effect of various hybrid bond schemes. Test results show that the specimens bonded with homogeneous epoxy demonstrate abrupt failure, whereas those with SMP exhibit gradual load-softening at failure. The load-carrying capacity and stiffness of the CFRP–steel interface are not influenced by hybrid bond configurations. The degree of CFRP-debonding is, however, affected by the hybrid bond scheme. Stress transfer from the steel substrate to the CFRP is well maintained along the hybrid bond line with significant local deformability of the interface layer. Analytical models report that shear stresses along the CFRP–steel interface are noticeably mitigated at geometric discontinuities and the proposed hybrid bond technique can be used for structure-level application.  相似文献   

2.
In this paper, the effects of fatigue leading to crack formation and potential durability-bonding problems in reinforced concrete (RC) beams strengthened by carbon fiber reinforced polymer (CFRP) are studied. These effects are shown to cause CFRP de-bonding and loss of load carrying capabilities under static or low cyclic loading. Two series of RC beams with CFRP strengthening system are constructed and designed to fail in shear and flexural failures, respectively, under static loading. Repeated loading tests are conducted according to various loading ranges and loading cycles, and the experimentally determined fatigue properties are discussed. The test results show that it is possible to eliminate the debonding modes for longitudinally bonded CFRP using a U-wrap CFRP combination. The fatigue loads tested showed a significant effect on concrete rather than the CFRP system especially for the strengthened beams bearing a higher shear level. Moreover, the proposed equation to fit the testing SN curve and the discussion of the stress in the component materials could be used for fatigue life predictions of beams with CFRP strengthening systems.  相似文献   

3.
This paper presents results of the feasibility of carbon/epoxy composites (CFRP) as a future helicopter flexbeam material. Torsional behaviors of unidirectional CFRP and glass/epoxy composites (GFRP) with the same resin matrix were investigated. The initial torsional rigidity of CFRP was almost identical to that of GFRP. The torsional rigidities calculated using finite element analyses (FEA) agreed with the experimental results: the torsional rigidities are governed mainly by the material’s shear stiffness. Torsion fatigue tests were also conducted by controlling the angle of twist of the sinusoidal wave under a constant tensile axial load. No catastrophic failure occurred with either GFRP or CFRP, although decreased amplitudes of torque and torsional rigidities were observed according to the number of cycles. Results of X-ray CT inspections and numerical calculation by FEA revealed that degradation of a torsional rigidity is caused mainly by splitting crack propagation along the fiber direction. The torsion fatigue life of CFRP was superior to that of GFRP. Consequently, results confirmed that CFRP exhibits excellent properties as a torsional element of a helicopter flexbeam in terms of torsional rigidity and tension–torsion fatigue behaviors.  相似文献   

4.
The effects of carbon nanotube (CNT) modified epoxy adhesive on CFRP-to-steel interfaces were investigated using double strap joints. The bond behaviours studied were failure modes, bond interface at microlevel, bond strength, effective bond length, CFRP strain distribution and bond-slip relationships.For the first time, a novel type of failure in the CFRP-steel joint was discovered, attributable to weak bonding between woven mesh and CFRP fibres. This failure mode prevented exploitation of the full potential of the carbon fibres and the CNT modified epoxy adhesive. Joints bonded with CNT-epoxy adhesive had an effective bond length of about 60 mm, whereas that of joints bonded with pure epoxy was about 70 mm. The CNT-epoxy adhesive can transfer more load from the host structure to the bonded CFRP laminates, consequently modifying bond behaviour. It is therefore expected that CNT-epoxy nanocomposites will assist in the strengthening and rehabilitation of steel infrastructures using CFRP laminates.  相似文献   

5.
The fatigue life of cracked steel members can be greatly extended by externally attached carbon fibre reinforced plastics (CFRP), which reduces the stress intensity factors (SIFs) at the crack tip. Access to cracks is sometimes limited and the CFRP has to be attached away from the cracks. There is a lack of knowledge on SIFs for such strengthening scheme. This paper presents the effects of CFRP bond locations on the Mode I SIF of centre‐cracked tensile (CCT) steel plate. The Mode I SIF at the crack tip is calculated using the finite element (FE) models. A correction factor is introduced as a function of CFRP bond location and crack length. The FE results are compared and agree well with experimental tests conducted by the authors. By combining with another two factors (one considering CFRP mechanical properties and the other considering CFRP bond width) derived previously by the authors, SIF formulae are proposed for CFRP reinforced CCT steel plates.  相似文献   

6.
Welded steel connections of infrastructures are susceptible to fatigue failure. Advanced carbon fibre reinforced polymer (CFRP) has been demonstrated promising for fatigue strengthening of steel structures. Limited research was conducted on CFRP strengthening of welded connections. This paper focuses on the application of ultra high modulus (UHM) CFRP plates with a modulus of 460 GPa to strengthen steel plates with longitudinal fillet weld attachment using five CFRP strengthening configurations. A series of fatigue tension tests were carried out with constant amplitude fatigue loading. Beach marking technique was adopted to record the crack propagation process. Effects of CFRP bond length, bond width and bond locations on fatigue performance of welded steel joints were investigated. The experimental results showed that UHM CFRP plates could generally increase the fatigue life of the welded steel joints. It seems better to apply CFRP on the welding side of the specimen to achieve longer fatigue life. Then, the effects of weld and weld attachment on the CFRP strengthening efficiency was further studied by comparing experimental results of non‐welded steel plates with single side UHM CFRP plate strengthening. Finally, the classification method was adopted to assess the strengthening efficiency of the UHM CFRP plate to the steel plates with longitudinal weld attachment.  相似文献   

7.
This study presents an experimental–analytical investigation on the structural behavior of precast prestressed hollow core RC slabs strengthened in flexure by CFRP laminates. Externally bonded and near surface mounted (NSM) laminates were used. The CFRP area and using transverse anchorage were also investigated. Results demonstrated that NSM technique resulted in optimum strengthening efficiency. The increased bond strength also resulted in full activation of the NSM laminates at failure. However, the NSM flexural strengthening level should be carefully designed to avoid unfavorable shear-tension failure mode. Moderate efficiency was associated with the externally bonded technique due to the premature de-bonding. However, this efficiency was optimized by using transverse CFRP laminates as anchorage, which re-directed de-bonding further away from the laminates’ ends and delayed failure, but at much lower deformations than those of the control slab. A rational analytical study was conducted. Comparisons between the experimental and analytical results demonstrated satisfactory agreements.  相似文献   

8.
Carbon fibre reinforced polymers (CFRP) has become a very popular method of improving the capacity of structural elements. Failure of CFRP strengthening systems when applied to concrete structures is usually typified by de-lamination of the CFRP from the concrete substrate. Research has shown that anchoring the ends of the CFRP plates or sheets can result in a significantly higher load/stress being reached before de-bonding occurs and that when sufficiently anchored, the CFRP material strain at failure can approach its ultimate strain at rupture. The following is continuation of experimental studies into CFRP anchorage systems used to retrofit concrete structures. It follows from previous investigations conducted by the authors into the bond behaviour of a new anchorage system utilising a mechanically strengthened substrate. The paper presents two alternative anchorages; both utilising uni-directional fabric wrap oriented horizontally across and parallel to the direction of the laminate. Both forms of anchorage are found to be effective in increasing the CFRP to concrete bond strength by distributing contact stresses over a greater area of concrete.  相似文献   

9.
Various methods are developed for strengthening reinforced concrete beams against shear. Nowadays, external bonding of various composite members to RC beams was very popular and successfully technique internationally. This study present test results on strengthening of shear deficient RC beams by external bonding of carbon fiber reinforced polymer (CFRP) straps. Six RC beams with a T section were tested under cyclic loading in the experimental program. Width of the CFRP straps, arrangements of straps along the shear span, and anchorage technique that were applied at the ends of straps was the main parameters that were investigated during experimental study. Inclined CFRP straps were bonded along the shear spans of shear deficient beams for strengthening against shear by using epoxy. Arrangements and width of the inclined CFRP straps were the main parameters that were changed among the specimens. The test results confirmed that all CFRP arrangements improved the strength and stiffness of the specimens significantly. The failure mode, and ductility of specimens were proved to differ according to the CFRP strap width and arrangement along the beam. Experimental results were compared with the analytical approaches that were suggested by ACI-440 Committee report.  相似文献   

10.
A new method for repairing and strengthening steel is under development and consists of using CFRP (carbon-fibre-reinforced-polymer) laminates bonded to the steel substrate. Research on this method has been conducted by a few research groups in recent years. The idea is to let the CFRP laminate carry a large part of the stresses and thereby reduce the load on the steel, which may have had its capacity lowered due to deterioration or fatigue. The present paper presents the results of FE analyses of steel beams strengthened with bonded CFRP laminates. The interfacial shear and peeling stresses that appear in the bond line between the steel and CFRP laminate are studied in both the elastic and plastic phase of the steel beam. Comparisons with the results obtained from laboratory tests conducted on steel beams strengthened with bonded CFRP laminates show that the behaviour of the strengthened beams can be captured using FE analyses. The distribution of the shear and peeling stresses near the end of the bond line were obtained from the FE analyses, together with the interfacial stresses that develop near beam mid-span due to the yielding of the steel. These stresses may exceed the capacity of the adhesive and cause debonding in this region.  相似文献   

11.
《Composites Part A》2001,32(1):45-58
In this work, the effect that test environment and pre-conditioning had on the fatigue behaviour of CFRP/epoxy lap–strap joints was investigated. It was shown that the fatigue resistance of the lap–strap joints did not vary significantly until the glass transition temperature, Tg, was approached, at which point a considerable reduction in the fatigue threshold load was observed. It was also noted that absorbed moisture resulted in a significant reduction in the Tg of the adhesive. This must be taken into account when selecting an adhesive to operate at elevated temperatures. The locus of failure of the joints was seen to be highly temperature dependent, transferring from primarily in the composite adherend at low temperatures to primarily in the adhesive at elevated temperatures. It was also seen that as the crack propagated along the lap–strap joint, the resolution of the forces at the crack tip tended to drive it into the strap adherend, which could result in complex mixed mode fracture surfaces.  相似文献   

12.
A model based on micro-mechanical concepts has been developed for predicting fatigue crack growth in titanium alloy matrix composites. In terms of the model, the crack system is composed of three zones: the crack, the plastic zone and the fibre. Crack tip plasticity is constrained by the fibres and remains so until certain conditions are met. The condition for crack propagation is that fibre constraint is overcome when the stress at the location of the fibre ahead of the crack tip attains a critical level required for debonding. Crack tip plasticity then increases and the crack is able to propagate round the fibre. The debonding stress is calculated using the shear lag model from values of interfacial shear strength and embedded fibre length published in the literature. If the fibres in the crack wake remain unbroken, friction stresses on the crack flanks are generated, as a result of the matrix sliding along the fibres. The friction stresses (known as the bridging effect) shield the crack tip from the remote stress, reducing the crack growth relative to that of the matrix alone. The bridging stress is calculated by adding together the friction stresses, at each fibre row bridging the crack, which are assumed to be a function of crack opening displacement and sliding distance at each row. The friction stresses at each fibre row will increase as the crack propagates further until a critical level for fibre failure is reached. Fibre failure is modelled through Weibull statistics and published experimental results. Fibre failure will reduce the bridging effect and increase the crack propagation rate. Calculated fatigue lives and crack propagation rates are compared with experimental results for three different materials (32% SCS6/Ti-15-3, 32% and 38% SCS6/Ti-6-4) subjected to mode I fatigue loading. The good agreement shown by these comparisons demonstrates the applicability of the model to predict the fatigue damage in Ti-based MMCs.  相似文献   

13.
Prestressed strengthening with carbon fiber reinforced polymer (CFRP) plates has gained attention for the rehabilitation of existing structures. In this study, a novel wedge-shaped bond anchorage system was developed. The wedge-shaped adhesive in the bond zones exerted a high pressure on the CFRP plate when the CFRP plate was subjected to tension. The shear force along the fiber direction resisted the tension force of the CFRP plate, realizing reliable anchorage. The shear stress in the anchorage zone was distributed uniformly, owing to the deformation of the low-modulus adhesive. Therefore, the stress concentration was reduced, which generally occurs for traditional CFRP anchors and causes premature failure of the CFRP plate. The stress distribution in the anchorage zone was obtained by mechanical analysis, and the maximum anchorage-bearing capacity was calculated based on the critical bond-slip criterion of the CFRP plate and epoxy adhesive. The effects of the adhesive properties on the anchorage efficiency were also investigated. A test was performed to validate the effectiveness of the proposed anchorage system.  相似文献   

14.
在花岗岩石梁受拉区嵌入CFRP筋以提高其抗弯承载力,对既有石结构加固和拓展现代石结构的应用范围具有重要意义。为研究石梁表层嵌埋CFRP筋组合石梁中CFRP筋、粘结剂与花岗岩的粘结性能,开展了26个直接拔出试件的试验研究。主要研究参数包括CFRP筋直径大小、CFRP筋嵌埋长度和粘结剂保护层厚度。试验现象揭示了3种典型破坏...  相似文献   

15.
Extensive research has been conducted on static bond behaviour between CFRP and steel. However, very limited research is available on the effect of fatigue loading on the bond behaviour between CFRP and steel. This paper attempts to fill the knowledge gap in this area. A series of static and fatigue tests on UHM (ultra high modulus) CFRP plate and steel plate double strap joints were conducted. Five specimens were tensioned to failure under static loading as control specimens. The other 12 specimens were tested under fatigue loading with load ratios ranging from 0.2 to 0.6 (defined as the ratio of the maximum fatigue load to the average static bond strength of control specimens). After going through pre-set number of fatigue cycles, the specimens were tensioned to failure under static loading. The failure modes, residual bond strength and residual bond stiffness of such specimens were compared with those of control specimens, to facilitate the investigation of the effect of fatigue loading on the bond behaviour. Microscopic investigation was also performed to reveal the underlying failure mechanism.  相似文献   

16.
碳纤维布加固RC梁中粘结性能的非线性有限元分析   总被引:18,自引:0,他引:18  
碳纤维布加固钢筋混凝土(RC)梁中,碳纤维布与梁底混凝土的剥离破坏使碳纤维布的强度不能得到充分发挥.分析碳纤维布与梁底混凝土的粘结应力,是研究碳纤维布加固剥离破坏承载力的基础问题.根据4根碳纤维布加固RC梁的试验研究结果,采用商业有限元程序MSC.Marc建立有限元模型,进行了非线性计算分析.通过分离总粘结应力中的局部粘结应力,得到粘结延伸长度范围内的锚固粘结应力分布,并结合试验数据对其分布规律进行了研究.根据分析和试验结果,引入了“有效锚固粘结长度”和“锚固粘结应力”的概念,给出了极限荷载下锚固粘结应力的计算建议.  相似文献   

17.
《Composites Part B》2004,35(4):279-290
Prefabricated carbon fibre reinforced plastic (CFRP) L-shaped plates can be used to shear strengthen reinforced concrete (RC) T-beams. Previous investigations by EMPA have shown the suitability of the CFRP L-shaped plates for static shear strengthening.In this paper, a large-scale fatigue test is presented which demonstrated the suitability of the CFRP L-shaped plates for shear strengthening of RC T-beams for fatigue reasons. The test beam was subjected to 5 million load cycles at a high load level and a subsequent failure test. Its behaviour is compared with that of a similar, statically tested beam. A fatigue design proposal is presented for users of the CFRP L-shaped plates.  相似文献   

18.
Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the cross-sectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive.Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.  相似文献   

19.
A Near Surface Mounted (NSM) strengthening technique was developed to increase the shear resistance of concrete beams. The NSM technique is based on fixing, by epoxy adhesive, Carbon Fiber Reinforced Polymer (CFRP) laminates into pre-cut slits opened in the concrete cover of lateral surfaces of the beams. To assess the efficacy of this technique, an experimental program of four-point bending tests was carried out with reinforced concrete beams failing in shear. Each of the four tested series was composed of five beams: without any shear reinforcement; reinforced with steel stirrups; strengthened with strips of wet lay-up CFRP sheets, applied according to the externally bonded reinforcement (EBR) technique; and two beams strengthened with NSM precured laminates of CFRP, one of them with laminates positioned at 90° and the other with laminates positioned at 45° in relation to the beam axis. Influences of the laminate inclination, beam depth and longitudinal tensile steel reinforcement ratio on the efficacy of the strengthening techniques were analyzed. Amongst the CFRP strengthening techniques, the NSM with laminates at 45° was the most effective, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. The NSM was also faster and easier to apply than the EBR technique. The performance of the ACI and fib analytical formulations for the EBR shear strengthening was appraised. In general, the contribution of the CFRP systems predicted by the analytical formulations was slightly larger than the values registered experimentally. Performance of the formulation by Nanni et al. for NSM strengthening technique was also appraised. Using bond stress and CFRP effective strain values obtained in pullout bending tests with NSM CFRP laminate system, the formulation by Nanni et al. predicted a contribution of this CFRP system for the beam shear resistance of 72% the experimentally recorded values.  相似文献   

20.
In terms of lightweight design, aerodynamics and structural integrity, bonded repairs represent the preferred approach for repairing composite structures in aircraft applications. In this work the influence of crucial surface parameters including roughness, polarity and chemical composition on the performance of bonded repairs is studied. Besides mechanical and physical interactions, the study aims at the surface modification of carbon-fiber reinforced polymers (CFRP) to tailor chemical interactions with the adhesive. Reactive epoxy and mercapto derivatives are attached onto the CFRP surface by a 2-step functionalization route to ensure optimized adhesion and covalent bonding to epoxy-based adhesives. The performance of bonded coupon joints is determined by single lap shear tests (tensile-shear loading) and fracture mechanical tests (mode I loading). The results give evidence that chemical interactions play a key role in the quality of bonded repair systems. By controlling the chemical surface properties improved bond strength, homogenous crack growth and cohesive failure patterns are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号