首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flammability, thermal and mechanical properties on cotton fabric were improved by being finished with the composite containing montmorillonite. To this aim, polymer dimethyl diallyl ammonium chloride-allyl glycidyl ether (PDMDAAC-AGE) was prepared and its structure characterized by Fourier transform infrared (FT-IR) and Nuclear magnetic resonance (1H NMR). The quaternary ammonium salt copolymer/montmorillonite composite (PDMDAAC-AGE/MMT) was obtained by polymer intercalation method. The X-ray diffraction (XRD) indicated that the MMT interlayer spacing increased after the polymer intercalation. Composite materials were loaded onto the cotton fabrics by a dip-pad-dry method. The thermo gravimetric analysis (TGA), vertical flame test and limiting oxygen index (LOI) results showed that the thermal and flammability properties of the cotton fabric were improved after it was finished with the composite. Tensile testing revealed an increase on mechanical properties of the finished fabric, but the physical properties hardly changed from the bending length and whiteness results. Scanning electron microscope (SEM) and energy disperse X-ray spectroscope (EDX) results verified the improvement of those properties due to the presence of montmorillonite in the composite.  相似文献   

2.
In order to explore the addition effect of fluorinated graphene (FG) on the mechanical and thermal performances of polyimide (PI) matrix, FG sheets are first prepared and employed as the nanofillers to construct PI/FG nanocomposite films. The prepared film is optically transparent at low content of FG and experimental results demonstrate that the addition of FG can effectively enhance the properties of PI matrix. Especially, compared with pure PI matrix, the addition of 0.5 wt% FG in PI can endow 30.4% increase in tensile stress and 115.2% increase in elongation at break. Experimental analyses considering the morphology and microstructure are also conducted, and the results indicate that the improved mechanical properties of the PI/FG nanocomposite films are mainly attributed to the good dispersibility of FG sheets in PI host, and the effective stress transfer between the polymer and the FG.  相似文献   

3.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

4.
As-received and pre-treated sepiolite/epoxy systems, characterised by an inorganic content from 2 to 10 wt.%, were investigated in order to assess induced-filler effect on degradation and fire behaviour.Thermogravimetrical results show that the thermal stability of the hosting epoxy, is slightly affected by the presence of sepiolite for both typologies; whereas, changes induced in char morphology by the pre-treated clay will significantly affect the fire behaviour of the final nanocomposite.Modelling of thermo-gravimetrical results in air atmosphere, by means of Kissinger procedure, shows a noteworthy reduction of activation energies associated with each degradation steps, especially at highest sepiolite content either by using as-received and pre-treated inorganic filler. This substantially indicates that the presence of sepiolite shorten the whole degradation process on the temperature scale. On the other hand, the different morphology of the char layer during the burning process can have relevant flame retardant effects acting on both condensate and vapour phase. Analysing the cone calorimetric data, a reduction of about 27% of the peak of heat release rate for the highest sepiolite percentage is measured and the burning total period is increased thus confirming that sepiolite when pre-treated represents a valid fire retardant inorganic filler for such a system.  相似文献   

5.
Soy polyol-based polyurethane (PU) nanocomposites (PUNCs) with 1 wt.% hydroxyl-functionalized multi-wall carbon nanotubes (CNT-OH) were prepared via in situ polymerization. CNT-OH increased the glass transition temperature as well as significantly improved the thermal stability and conductivity of the PUNCs. The PUNC Young’s modulus was much lower than that of neat PU. The tensile strength of the PUNCs with large CNT-OH diameters was slightly higher than that of neat PU. Compared with neat PU, the elongation at break of the PUNCs improved by 30%, 39%, and 45% with increased CNT-OH diameters. Scanning and transmission electron microscopic methods revealed CNT-OH relatively homogeneous dispersion in the PU matrix.  相似文献   

6.
In the present work, the effect of lignin particles and wood flour weight fractions incorporated on friability and thermal stability of a phenolic foam was determined. In addition, the effect of hygrothermal aging on compressive mechanical properties and cell size of the materials was studied. The incorporation of lignin particles decreased friability of the phenolic foam; whereas, wood flour increased it. The influence of both reinforcements on thermal stability of the material was very low. Although the reduction in mechanical properties of reinforced foams was higher than for the unreinforced material after hygrothermal aging, modulus and strength of the reinforced foams were still superior to those of the unreinforced material. Hygrothermal aging did not influence cell size of the foams studied. The material which exhibits the best combination of features was 8.5 wt.% lignin particle-reinforced phenolic foam.  相似文献   

7.
8.
Chicken feather fiber (CFF)/reinforced poly(lactic acid) (PLA) composites were processed using a twin-screw extruder and an injection molder. The tensile moduli of CFF/PLA composites with different CFF content (2, 5, 8 and 10 wt%) were found to be higher than that of pure PLA, and a maximum value of 4.2 GPa (16%) was attained with 5 wt% of CFF without causing any substantial weight increment. The morphology, evaluated by scanning electron microscopy (SEM), indicated that an uniform dispersion of CFF in the PLA matrix existed. The mechanical and thermal properties of pure PLA and CFF/PLA composites were compared using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and thermogravimetric analysis (TGA). DMA results revealed that the storage modulus of the composites increased with respect to the pure polymer, whereas the mechanical loss factor (tan δ) decreased. The results of TGA experiments indicated that the addition of CFF enhanced the thermal stability of the composites as compared to pure PLA. The outcome obtained from this study is believed to assist the development of environmentally-friendly composites from biodegradable polymers, especially for converting agricultural waste – chicken feather into useful products.  相似文献   

9.
Study was made of the effect of multiwall carbon nanotubes (MWCNTs) and polymeric compatibilizer on thermal, mechanical, and tribological properties of high density polyethylene (HDPE). The composites were prepared by melt mixing in two steps. Carbon nanotubes (CNTs) were melt mixed with maleic anhydride grafted polyethylene (PEgMA) as polymeric compatibilizer to produce a PEgMA-CNT masterbatch containing 20 wt% of CNTs. The masterbatch was then added to HDPE to prepare HDPE nanocomposites with CNT content of 2 or 6 wt%. The unmodified and modified (hydroxyl or amine groups) CNTs had similar effects on the properties of HDPE-PEgMA indicating that only non-covalent interactions were achieved between CNTs and matrix. According to SEM studies, single nanotubes and CNT agglomerates (size up to 1 μm) were present in all nanocomposites regardless of content or modification of CNTs. Addition of CNTs to HDPE-PEgMA increased decomposition temperature, but only slight changes were observed in crystallization temperature, crystallinity, melting temperature, and coefficient of linear thermal expansion (CLTE). Young’s modulus and tensile strength of matrix clearly increased, while elongation at break decreased. Measured values of Young’s moduli of HDPE-PEgMA-CNT composites were between the values of Young’s moduli for longitudinal (E11) and transverse (E22) direction predicted by Mori-Tanaka and Halpin-Tsai composite theories. Addition of CNTs to HDPE-PEgMA did not change the tribological properties of the matrix. Because of its higher crystallinity, PEgMA possessed significantly different properties from HDPE matrix: better mechanical properties, lower friction and wear, and lower CLTE in normal direction. Interestingly, the mechanical and tribological properties and CLTEs of HDPE-PEgMA-CNT composites lie between those of PEgMA and HDPE.  相似文献   

10.
Polyhedral oligomeric silsesquioxane grafting thermally conductive silicon carbide particle (POSS-g-SiCp) fillers, are performed to fabricate highly thermally conductive ultra high molecular weight polyethylene (UHMWPE) composites combining with optimal dielectric properties and excellent thermal stabilities, via mechanical ball milling followed by hot-pressing method. The POSS-g-SiCp/UHMWPE composite with 40 wt% POSS-g-SiCp exhibits relative higher thermal conductivity, lower dielectric constant and more excellent thermal stability, the corresponding thermally conductive coefficient of 1.135 W/mK, the dielectric constant of 3.22, and the 5 wt% thermal weight loss temperature of 423 °C, which holds potential for packaging and thermal management in microelectronic devices. Agari’s semi-empirical model fitting reveals POSS-g-SiCp fillers have strong ability to form continuous thermally conductive networks.  相似文献   

11.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   

12.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

13.
In this work, multi-walled carbon nanotubes (MWCNTs) were electrolessly Ag-plated in order to investigate the effect of plating time on the thermal conductivity of Ag-plated MWCNTs-reinforced epoxy matrix composites. MWCNT surfaces were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). The thermal conductivity of Ag-plated MWCNT-reinforced epoxy nanocomposites was measured using the thermal equilibrium method with ASTM D5470. From the results, it was found that the thermal conductivity of the composites enhanced with increasing plating time. In particular the Ag-10/EP sample showed more than 150% enhancement of the thermal conductivity compared to the as-received CNTs/EP sample. These results were attributed to the high contents of Ag particles and the increase of the interfacial adhesion between the Ag-CNTs and EP matrix in the composites.  相似文献   

14.
Exfoliated graphite nanoplates (xGnPs)/polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene (SEBS) nanocomposites have been prepared by the simple melt-compounding approach. The structural, mechanical and viscoelastic properties of these composites were studied and compared. Wide-angle X-ray diffraction (WAXD) studies indicated that the processing of nanocomposites did not change the original d-spacing of xGnPs. Scanning electron microscopy observation on the fracture surfaces of the composites shows a uniform dispersion of xGnPs throughout SEBS matrix and strong interfacial adhesion between oxidized xGnPs and the matrix, which are responsible for the considerable enhancement of mechanical properties of the composites. It is found that the addition of xGnPs particles improved both the elastic modulus and storage modulus of pure SEBS significantly and the higher the xGnPs content, the higher the modulus of the nanocomposite. Moreover, the effects of dispersed xGnPs on the microphase separation of SEBS have also been investigated using small angle X-ray scattering (SAXS).  相似文献   

15.
Shape memory silica/epoxy composites were successfully prepared by hydrolysis of tetraethoxysilane (TEOS) within the epoxy matrix via latex, freeze-drying, and hot-press molding method. The silane coupling agent 3-triethoxysilylpropylamine (KH550) was introduced to improve the interfacial properties between the in-situ generated silica particle and epoxy matrix. The morphology structure and the effect of the content of the in-situ formed silica on the mechanical and shape memory properties of the silica/epoxy composites were studied. The experimental results indicated that the silica particles were homogenously dispersed and well incorporated into the epoxy matrix. Significant improvements were achieved in the mechanical property of the organic–inorganic hybrid materials. The silica/epoxy composites exhibited high shape recovery and fixity ratio approximately 100% even after 10 thermo-mechanical cycles.  相似文献   

16.
High density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP) and poly(vinyl chloride) (PVC) with Phragmiteskarka wood flour (WF) and polyethylene-co-glycidyl methacrylate (PE-co-GMA) was used to develop wood polymer composite (WPC) by solution blending method. The effect of addition of nanoclay and TiO2 on the properties of the composite was examined. The exfoliation of silicate layers and dispersion of TiO2 nanopowder was studied by X-ray diffractometry and transmission electron microscopy. The improvement in miscibility among polymers due to addition of compatibilizer was studied by scanning electron microscopy (SEM). WPC treated with 3 phr each of clay and TiO2 showed an improvement in thermal stability. Mechanical, UV resistance and flame retarding properties were also enhanced after the incorporation of clay/TiO2 nanopowder to the composites. Both water and water vapor absorption were found to decrease due to inclusion of nanoclay and TiO2 in WPC.  相似文献   

17.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

18.
High density polyethylene (HDPE)/attapulgite (AT) nanocomposites, prepared by conventional injection molding (CIM) and dynamic packing injection molding (DPIM), were investigated with focus on AT-induced crystallization and orientation under shear. Infrared spectroscopy (FTIR) analysis showed there is no special chemical interaction between HDPE and AT, but shear induced significant changes on the material structure and properties. Differential scanning calorimetry (DSC) analysis showed strong nucleation effect by AT especially under shear. And more, shear will induce much better dispersion of AT in the DPIM sample vs. CIM. AT nanorods and lamellae of HDPE are more organized in the DPIM sample while there is only random distribution in the CIM sample. Most AT nanorods embed in the HDPE lamellae and form a brush-like hybrid structure due to shear. The shear-induced orientation will be enhanced with higher AT loading. The mechanical performance of the composites was significantly improved via DPIM.  相似文献   

19.
To enhance the adhesion between the natural fibre and the thermoplastic matrix, a coupling agent of maleic anhydride grafted polypropylene MAPP is applied. In literature, there are different guidelines of the optimum percentage required of MAPP. Therefore, a systematic work is carried out to optimise the MAPP percent with respect to the type of the natural fibre. Different parameters are investigated namely; Coupling agent ratio to the fibre (0%, 6.67%, 10%, 13.3%, 16.67%), coupling agent source, fibre type (flax, hemp, sisal), and fibre content (30%, 50%). Composite is produced using a kneader and the resulting material is assessed mechanically, thermally, microscopically and for water absorption. For different MAPP source and the natural fibre type, optimum MAPP to fibre ratio is found in average to range between 10% and 13.3% according to the investigated property (stiffness, strength and impact). Increase of MAPP is found to decrease the melting temperature. The thermal behaviour is also linked to the copolymer molecular weight.  相似文献   

20.
Ternary composites of a biodegradable thermoplastic matrix, Mater-Bi® (MB), with various polyolefins (PP, HDPE and PS) and hemp fibres (H) were obtained by melt mixing and characterized by SEM, OM, DSC, TGA and tensile tests. The properties of composites were compared with those of MB/polyolefin and MB/H blends. Maleic anhydride functionalized polyolefins were employed as compatibilizers. Crystallization behaviour and morphology of the composites were found to be affected by the composition, phase dispersion and compatibilizer. Thermogravimetric analysis indicated that the thermal stability of the polyolefin phase and fibres was influenced by the composition and phase structure. A significant improvement of tensile modulus and strength was recorded for composites of MB with PE and PS as compared to MB/H composites. The results indicate that incorporation of polyolefins in the biodegradable matrix, compared to binary matrix/fibre system, may have significant advantages in terms of properties, processability and cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号