首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Elbe-DSS is a computer based system for integrated river basin management of the German part of River Elbe basin. Simulation models are used to assess the efficiency of measures such as reforestation, changes of agricultural practices or the efficiency of wastewater treatment plants for achieving management targets. MONERIS and GREAT-ER are integrated into the Elbe-DSS to assess nutrient and pollutant loads. MONERIS calculates nutrient inputs from diffuse and point sources on a sub-catchment scale of about 1000 km2. GREAT-ER is a tool for exposure assessment of point source emissions and considers fate in sewage treatment plants as well as degradation and transport in rivers. Both models make long-term predictions, but their spatial scales of operations differ. GREAT-ER divides the whole river network into small segments that are linked through a routing algorithm. The segments are coupled to MONERIS using accumulated flow length distribution. Linking the two models allows to distribute diffuse nutrient emissions calculated from MONERIS and point source emissions from GREAT-ER to the river network, where further elimination and transport processes are calculated. We exemplify the DSS in a study assessing the effects of different reforestation and erosion control measures on phosphate loads and concentrations in the river network.  相似文献   

2.
Management of freshwater quality requires modelling tools for rapid evaluation of land use and management scenarios. This paper presents the CLUES (Catchment Land Use and Environmental Sustainability) model to address this need. CLUES provides steady state, spatially distributed, integrated catchment models tightly coupled to GIS software to predict mean annual loads of total nitrogen, total phosphorus, sediments and E. coli, and concentration of nutrients throughout New Zealand (268,000 km2) with a subcatchment resolution of 0.5 km2. CLUES also estimates potential nutrient concentrations for estuaries and provides key farm socio-economic indicators. The model includes a user interface for study area selection, scenario creation, data geo-visualisation, and export of results. It is pre-populated with spatial data and parameter values for New Zealand. Evaluation of the model and a summary of applications demonstrate the tractability and utility of national-scale rapid scenario assessment tools within a GIS framework.  相似文献   

3.
Our study aims to estimate confounded effects of nutrients and grazing zooplankton (Crustacea) on phytoplankton groups—specifically on nitrogen-fixing Cyanobacteria—in the shallow, mesotrophic Lake Pyhäjärvi in the northern hemisphere (Finland, northern Europe, lat. 60°54′–61°06′, long. 22°09′–22°22′). Phytoplankton is modelled with a non-linear dynamic model which describes the succession of three dominant algae groups (Diatomophyceae, Chrysophyceae, nitrogen-fixing Cyanobacteria) and minor groups summed together as a function of total phosphorus, total nitrogen, temperature, global irradiance and crustacean zooplankton grazing. The model is fitted using 8 years of in situ observations and adaptive Markov chain Monte Carlo (MCMC) methods for estimation of model parameters. The approach offers a way to deal with noisy data and a large number of weakly identifiable parameters in a model. From our posterior simulations we calculate the lower limit for zooplankton carbon mass concentration (45 μgC L−1) and the upper limit for total phosphorus concentration (16 μg L−1) that satisfy with 0.95 probability our predefined water quality criteria (Cyanobacteria concentration during late summer period does not exceed the value 0.86 mg L−1). Within the observational range total phosphorus has marginal effect on Cyanobacteria compared to the zooplankton grazing effect, which is temperature-dependent. Extensive fishing efforts are needed to attain the criteria.  相似文献   

4.
Existing alumina extraction and material production methods result in the formation of harmful ammonia gas or ammonia water originating from aluminum nitride (AlN) in dross. Therefore, in this study, aluminum dross was used as a denitration reagent to eliminate nitrogen oxides in flue gas and AlN in dross. Based on the proposed scheme, thermodynamic calculations were performed to investigate the denitrification effect and reduction of aluminum dross in flue gas. The results show that equilibrium concentrations of NO, NO2, and HF in the flue gas were influenced mainly by temperature; their concentrations increased with an increase in the temperature, reaching 4.4 × 10−20, 1.7 × 10−38, and 7.0 × 10−8 g/m3, respectively, at 923 K. The Gibbs free energy corresponding to the reaction of CO2 with Al/AlN in aluminum dross was −377/–120 kJ/mol. HF, originating from the reaction of NaF and water vapor, maintained an extremely low concentration of 6.99 × 10−8 g/m3 at 923 K. These results indicate that aluminum dross processing may clean the flue gas and increase the calorific value while eliminating the hazards of AlN. The results obtained herein will provide theoretical guidance toward new avenues of aluminum dross utilization.  相似文献   

5.
The present study aimed to examine the effect of carrying different magnitudes of load on the changes and relationships of salivary Immunoglobulin A (IgA) and cortisol concentrations and the physiological parameters. Twelve Indian soldiers performed an intense uphill treadmill walking at two speeds viz. 2.5 km h−1 and 4 km h−1 without any load and carrying 10.7 kg, 17 kg and 21.4 kg loads for 36 min. Salivary IgA concentration relative to total protein decreased significantly after each exercise session and cortisol concentration increased concomitantly with physiological variables e.g. heart rate (HR), oxygen consumption (VO2), minute ventilation (VE) and energy expenditure (EE). An inverse correlation (P < 0.05) was observed between IgA with HR for all the conditions except when the participants walked at 4 km h−1 carrying 17 kg and 21.4 kg load. The degree and type of physiological and biochemical responses may help in designing combat training, operations and developing preventive strategies of military personnel involving intense exercise.Relevance to industry: Walking with load in incremental uphill terrain is highly stressful and fatiguing. Results of the present study will help in designing training schedules for maintaining the optimal fitness of an individual during uphill walking with loads in different speeds.  相似文献   

6.
The electrochemical sensor of triazole (TA) self-assembled monolayer (SAM) modified gold electrode (TA SAM/Au) was fabricated. The electrochemical behaviors of epinephrine (EP) at TA SAM/Au have been studied. The TA SAM/Au shows an excellent electrocatalytic activity for the oxidation of EP and accelerates electron transfer rate. The diffusion coefficient is 1.135 × 10−6 cm2 s−1. Under the optimum experiment conditions (i.e. 0.1 mol L−1, pH 4.4, sodium borate buffer, accumulation time: 180 s, accumulation potential: 0.6 V, scan rate: 0.1 Vs−1), the cathodic peak current of EP versus its concentration has a good linear relation in the ranges of 1.0 × 10−7 to 1.0 × 10−5 mol L−1 and 1.0 × 10−5 to 6.0 × 10−4 mol L−1 by square wave adsorptive stripping voltammetry (SWASV), with the correlation coefficient of 0.9985 and 0.9996, respectively. Detection limit is down to 1.0 × 10−8 mol L−1. The TA SAM/Au can be used for the determination of EP in practical injection. Meantime, the oxidative peak potentials of EP and ascorbic acid (AA) are well separated about 200 ± 10 mV at TA SAM/Au, the oxidation peak current increases approximately linearly with increasing concentration of both EP and AA in the concentration range of 2.0 × 10−5 to 1.6 × 10−4 mol L−1. It can be used for simultaneous determination of EP and AA.  相似文献   

7.
A polynomial P(X)  = Xd + ad  1Xd  1 + ⋯ is called lacunary when ad  1 =  0. We give bounds for the roots of such polynomials with complex coefficients. These bounds are much smaller than for general polynomials.  相似文献   

8.
Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m−2 yr−1, which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m−2 yr−1 on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m−2 yr−1, respectively, in agreement with observed average GPP (1230 g C m−2 yr−1) and RECO (1046 g C m−2 yr−1). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was ∼5–16 g C week−1 across the study sites, while the goodness of fit (R2) was ∼0.4–0.9. For evapotranspiration (ET), the average value of simulated ET (415 mm yr−1) for all sites and years is close to the average value of the observed ET (451 mm yr−1) by flux towers (on a weekly basis, RMSE∼2–8 mm week−1; R2 = 0.3–0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.  相似文献   

9.
Impaired water quality caused by human activity and the spread of invasive plant and animal species has been identified as a major factor of degradation of coastal ecosystems in the tropics. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized Non-Point Source Pollution Model), in simulating runoff and soil erosion in a 48 km2 watershed located on the Island of Kauai, Hawaii. The model was calibrated and validated using 2 years of observed stream flow and sediment load data. Alternative scenarios of spatial rainfall distribution and canopy interception were evaluated. Monthly runoff volumes predicted by AnnAGNPS compared well with the measured data (R2 = 0.90, P < 0.05); however, up to 60% difference between the actual and simulated runoff were observed during the driest months (May and July). Prediction of daily runoff was less accurate (R2 = 0.55, P < 0.05). Predicted and observed sediment yield on a daily basis was poorly correlated (R2 = 0.5, P < 0.05). For the events of small magnitude, the model generally overestimated sediment yield, while the opposite was true for larger events. Total monthly sediment yield varied within 50% of the observed values, except for May 2004. Among the input parameters the model was most sensitive to the values of ground residue cover and canopy cover. It was found that approximately one third of the watershed area had low sediment yield (0–1 t ha−1 y−1), and presented limited erosion threat. However, 5% of the area had sediment yields in excess of 5 t ha−1 y−1. Overall, the model performed reasonably well, and it can be used as a management tool on tropical watersheds to estimate and compare sediment loads, and identify “hot spots” on the landscape.  相似文献   

10.
A flow-injection biamperometric method for the determination of iron(III) has been described. The detector consists of two chambers separated by a salt bridge, and one platinum wire working electrode is embedded in each chamber, respectively. When iron(III) solution and hydrogen peroxide solution simultaneously flow through two chambers, the reduction of iron(III) at one platinum electrode is associated with the oxidation of hydrogen peroxide at the other platinum electrode, forming such a system as similar to a reversible couple one. The biamperometric system can perform the determination of iron(III) without any external potential difference. The linear relationship is obtained from 1.0 × 10−6 to 1.0 × 10−4 mol l−1 with a detection limit of 6.0 × 10−7 mol l−1. The proposed method exhibits the satisfactory reproducibility with a relative standard derivation (R.S.D.) of 1.4% for 17 successive determinations of 2.0 × 10−5 mol l−1 iron(III) and is applied to the determination of iron(III) in soil.  相似文献   

11.
Aboveground dry biomass was estimated for the 1.3 M km2 forested area south of the treeline in the eastern Canadian province of Québec by combining data from an airborne and spaceborne LiDAR, a Landsat ETM+ land cover map, a Shuttle Radar Topographic Mission (SRTM) digital elevation model, ground inventory plots, and vegetation zone maps. Plot-level biomass was calculated using allometric relationships between tree attributes and biomass. A small footprint portable laser profiler then flew over these inventory plots to develop a generic airborne LiDAR-based biomass equation (R2 = 0.65, n = 207). The same airborne LiDAR system flew along four portions of orbits of the ICESat Geoscience Laser Altimeter System (GLAS). A square-root transformed equation was developed to predict airborne profiling LiDAR estimates of aboveground dry biomass from GLAS waveform parameters combined with an SRTM slope index (R2 = 0.59, n = 1325).Using the 104,044 quality-filtered GLAS pulses obtained during autumn 2003 from 97 orbits over the study area, we then predicted aboveground dry biomass for the main vegetation areas of Québec as well as for the entire Province south of the treeline. Including cover type covariances both within and between GLAS orbits increased standard errors of the estimates by two to five times at the vegetation zone level and as much as threefold at the provincial level. Aboveground biomass for the whole study area averaged 39.0 ± 2.2 (standard error) Mg ha? 1 and totalled 4.9 ± 0.3 Pg. Biomass distributions were 12.6% northern hardwoods, 12.6% northern mixedwood, 38.4% commercial boreal, 13% non-commercial boreal, 14.2% taiga, and 9.2% treed tundra. Non-commercial forests represented 36% of the estimated aboveground biomass, thus highlighting the importance of remote northern forests to C sequestration. This study has shown that space-based forest inventories of northern forests could be an efficient way of estimating the amount, distribution, and uncertainty of aboveground biomass and carbon stocks at large spatial scales.  相似文献   

12.
A novel vanadium oxide polypropylene carbonate modified glassy carbon electrode was developed and used for the measurement of ascorbic acid (AA). The electrode was prepared by casting a mixture of vanadium tri(isopropoxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the surface of a glassy carbon electrode. The electrochemical behavior of the VO(OC3H7)3–PPC film modified glassy carbon electrode was investigated by cyclic voltammetry and amperometry. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare glassy carbon electrode, the modified electrode exhibits a 220 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 4 × 10−8 and 1 × 10−4 mol L−1 and the detection limit of 1.5 × 10−8 mol L−1 (S/N = 3) in the pH 8.06 Britton–Robinson solution. Quantitative recovery of the ascorbic acid in synthetic samples has been obtained and the interferences from different species have been studied. The method has been successfully applied to the determination of ascorbic acid in fruits. The concentrations of ascorbic acid measured by this method are in good agreement with the literature value. It is much promising for the modified films to be used as an electrochemical sensor for the detection of ascorbic acid.  相似文献   

13.
Soil loss causes environmental degradation and reduces agricultural productivity over large areas of the world. Here, we use the latest earth observation data and soil visible–near infrared (vis–NIR) spectroscopy to estimate the factors of the Revised Universal Soil Loss Equation (RUSLE) and to model soil loss by water erosion in Australia. We estimate rainfall erosivity (R) using the Tropical Rainfall Measuring Mission (TRMM); slope length and steepness (L and S) using a 3-arcsec Shuttle Radar Topography Mission (SRTM) digital elevation model; cover management (C) and control practice (P) using the national dynamic land cover dataset (DLCD) of Australia derived from the moderate-resolution imaging spectroradiometer (MODIS); and soil erodibility (K) using vis–NIR estimates of the contents of sand, silt, clay and organic carbon in Australian soil. We model K using a machine-learning algorithm with environmental predictors selected to best capture the factors that influence erodibility and produced a digital map of K. We use the derived RUSLE factors to estimate soil loss at 1-km resolution across the whole of Australia. We found that the potential gross average soil loss by water erosion in Australian is 1.86 t ha−1 y−1 (95% confidence intervals of 1.78 and 1.93 t ha−1 y−1), equivalent to a total of 1242 × 106 tonnes of soil lost annually (95% confidence intervals of 1195 and 1293 t × 106 y−1). Our estimates of erosion are generally smaller than previous continental estimates using the RUSLE, but particularly in croplands, which might indicate that soil conservation practices effectively reduced erosion in Australia. However we also identify localized regions with large erosion in northern Australia and northeastern Queensland. Erosion in these areas carries sediments laden with nitrogen, phosphorus and pollutants from agricultural production into the sea, negatively affecting marine ecosystems. We used the best available data and our results provide better estimates compared to previous assessments. Our approach will be valuable for other large, sparsely sampled areas of the world where assessments of soil erosion are needed.  相似文献   

14.
The present study is a critical assessment of thermochemical data for gaseous ruthenium oxides based on available experimental data. A full critical analysis and a reinterpretation of data are presented with a proposition for new accurate standard formation enthalpies values: Δf298(RuO4, g) = −197.6 ± 5.5 kJ mol−1, Δf298(RuO3, g) = −53.0 ± 10 kJ mol−1, Δf298(RuO2, g) = 158 ± 20 kJ mol−1 and Δf298(RuO, g) = 301 ± 28 kJ mol−1.  相似文献   

15.
A distributed water balance model is used to simulate the soil moisture regime of the Motueka catchment. The model is a major simplification of the Distributed Hydrology–Vegetation–Soil Model (DHVSM) with modifications suitable for the study area. The model was applied at 25-m resolution with a 1-day time-step for 10 years. The simulated hydrograph showed good correspondence with the observed hydrograph and there was good agreement of simulated and measured mean annual discharges (57.3 m3 s−1 as compared with 58.7 m3 s−1). Five different land cover scenarios were used to predict the effects of vegetation change on the hydrological regime: (1) current land cover; (2) prehistoric land cover; (3) maximum pine planting; (4) pine trees on easy slopes; and (5) pine trees on steep slopes. The pine scenarios all reduced the mean annual flow by about 2 m3 s−1, while the prehistoric scenario reduced the mean annual flow by about 6 m3 s−1. The pine scenarios (3, 4, and 5) reduced the 7-day 5-year low flow from 7.4 m3 s−1 to between 6.5 m3 s−1 and 6.8 m3 s−1, respectively; and the prehistoric scenario reduced the 7-day 5-year low flow to 5.3 m3 s−1.  相似文献   

16.
A cobaloxime ([chlorobis(dimethylglyoximeato)(triphenylphosphine)] cobalt (III), [Co(dmgH)2pph3Cl]) incorporated in a plasticized poly(vinyl chloride) membrane was used to develop a perchlorate-selective electrode. The influence of membrane composition on the electrode response was studied. The electrode exhibits a Nernstian response over the perchlorate concentration range 1.0 × 10−6 to 1 × 10−1 mol l−1 with a slope of −56.8 ± 0.7 mV per decade of concentration, a detection limit of 8.3 × 10−7, a wide working pH range (3–10) and a fast response time (<15 s). The electrode shows excellent selectivity towards perchlorate with respect to many common anions. The electrode was used to determine perchlorate in water and human urine.  相似文献   

17.
A grid-oriented Biogenic Emission Model (BEM) has been developed to calculate Non-Methane Volatile Organic Compound (NMVOC) emissions from vegetation in high spatial and temporal resolutions. The model allows the emissions calculation for any modeling domain covering Europe on the basis of: 1) the U.S. Geological Survey 1-km resolution land-use database, 2) a land-use specific, monthly isoprene, monoterpene and Other Volatile Organic Compound (OVOC) emission potentials and foliar biomass densities database, 3) temperature and solar radiation data provided by the mesoscale meteorological model MM5. The model was applied for Europe in 30-km spatial resolution for the year 2003. The European total emissions for 2003 consist of 33.0% isoprene, 25.5% monoterpenes and 41.5% OVOC. BEM results are compared with those from the well-documented global Model of Emissions of Gases and Aerosols from Nature (MEGAN). The BEM total emissions compare well with the MEGAN ones. In July 2003, the results of both models agree within a factor of 1.2 for total isoprene emissions and within a factor of 2 for total monoterpene emissions. The comparison of the spatial distributions of the July 2003 isoprene and monoterpene emissions calculated with BEM and MEGAN shows that, in the greater part of the study area, the differences are below the current uncertainty limit for the estimation of spatially-resolved biogenic VOC emissions in Europe being equal to about ±600 kg km?2 month?1. Differences that are above this limit are found mainly in the eastern European countries for isoprene and in the Mediterranean countries for monoterpenes.  相似文献   

18.
Nuisance blue-green algal blooms contribute to aesthetic degradation of water resources by means of accelerated eutrophication, taste and odor problems, and the production of toxins that can have serious adverse human health effects. Current field-based methods for detecting blooms are costly and time consuming, delaying management decisions. Methods have been developed for estimating phycocyanin concentration, the accessory pigment unique to freshwater blue-green algae, in productive inland water. By employing the known optical properties of phycocyanin, researchers have evaluated the utility of field-collected spectral response patterns for determining concentrations of phycocyanin pigments and ultimately blue-green algal abundance. The purpose of this research was to evaluate field spectroscopy as a rapid cyanobacteria bloom assessment method. In-situ field reflectance spectra were collected at 54 sampling sites on two turbid reservoirs on September 6th and 7th in Indianapolis, Indiana using ASD Fieldspec (UV/VNIR) spectroradiometers. Surface water samples were analyzed for in-vitro pigment concentrations and other physical and chemical water quality parameters. Semi-empirical algorithms by Simis et al. [Simis, S., Peters, S., Gons, H. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. American Society of Limnology and Oceanography 50(11): 237–245] were applied to the field spectra to predict chlorophyll a and phycocyanin absorption at 665 nm and 620 nm, respectively. For estimation of phycocyanin concentration, a specific absorption coefficient of 0.0070 m2 mg PC-1 for phycocyanin at 620 nm, aPC?(620), was employed, yielding an r2 value of 0.85 (n = 48, p < 0.0001), mean relative residual value of 0.51 (σ = 1.41) and root mean square error (RMSE) of 19.54 ppb. Results suggest this algorithm could be a robust model for estimating phycocyanin. Error is highest in water with phycocyanin concentrations of less than 10 ppb and where phycocyanin abundance is low relative to chlorophyll a. A strong correlation between measured phycocyanin concentrations and biovolume measurements of cyanobacteria was also observed (r = 0.89), while a weaker relationship (r = 0.66) resulted between chlorophyll a concentration and cyanobacterial biovolume.  相似文献   

19.
Surface chlorophyll a concentrations (Ca, mg m− 3) in the Southern Ocean estimated from SeaWiFS satellite data have been reported in the literature to be significantly lower than those measured from in situ water samples using fluorometric methods. However, we found that high-resolution (∼ 1 km2/pixel) daily SeaWiFS Ca (CaSWF) data (SeaDAS4.8, OC4v4 algorithm) was an accurate measure of in situ Ca during January-February of 1998-2002 if concurrent in situ data measured by HPLC (CaHPLC) instead of fluorometric (CaFluor) measurements were used as ground truth. Our analyses indicate that CaFluor is 2.48 ± 2.23 (n = 647) times greater than CaHPLC between 0.05 and 1.5 mg m− 3 and that the percentage overestimation of in situ Ca by fluorometric measurements increases with decreasing concentrations. The ratio of CaSWF/CaHPLC is 1.12 ± 0.91 (n = 96), whereas the ratio of CaSWF/CaFluor is 0.55 ± 0.63 (n = 307). Furthermore, there is no significant bias in CaSWF (12% and − 0.07 in linear and log-transformed Ca, respectively) when CaHPLC is used as ground truth instead of CaFluor. The high CaFluor/CaHPLC ratio may be attributed to the relatively low concentrations of chlorophyll b (Cb/Ca = 0.023 ± 0.034, n = 482) and relatively high concentrations of chlorophyll c (Cc/Ca = 0.25 ± 0.59, n = 482) in the phytoplankton pigment composition when compared to values from other regions. Because more than 90% of the waters in the study area, as well as in the entire Southern Ocean (south of 60° S), have CaSWF between 0.05 and 1.5 mg m− 3, we consider that the SeaWiFS performance of Ca retrieval is satisfactory and for this Ca range there is no need to further develop a “regional” bio-optical algorithm to account for the previous SeaWiFS “underestimation”.  相似文献   

20.
Accurate remote assessment of phytoplankton chlorophyll a (chla) concentration is particularly challenging in turbid, productive waters. Recently a conceptual model containing reflectance in three spectral bands in the red and near infra-red range of the spectrum was suggested for retrieving chla concentrations in turbid productive waters; it was calibrated and validated in lakes and reservoirs in Nebraska and Iowa. The objective of this paper is to evaluate the performance of this three band model as well as its special case, the two-band model to estimate chla concentration in Chesapeake Bay, as representative of estuarine Case II waters, and to assess the accuracy of chla retrieval. To evaluate the model performance, dual spectroradiometers were used to measure subsurface spectral radiance reflectance in the visible and near infra-red range of the spectrum. Water samples were collected concurrently and contained widely variable chla (9 to 77.4 mg/m3) and total suspended solids (7-65 mg/L dry wt). Colored dissolved organic matter (CDOM) absorption at 440 nm was 0.20 to 2.50 m− 1; Secchi disk transparency ranged from 0.28 to 1.5 m. The two- and three-band models were spectrally tuned to select the spectral bands for most accurate chla estimation. Strong linear relationships were established between analytically measured chla and both the three-band model [R− 1(675)-R− 1(695)] × R(730) and the two-band model R(720)/R(670), where R(λ) is reflectance at wavelength λ. The three-band model accounted for 81% of variation in chla and allowed estimation of chla with a root mean square error (RMSE) of less than 7.9 mg/m3, whereas the two-band model accounted for 79% of chla variability and RMSE of chla estimation was below 8.4 mg/m3. The three-band model with MERIS spectral bands allows accurate chla estimation with RMSE below 9.1 mg/m3. Two-band model with SeaWiFS bands and MODIS 667 nm and 748 nm bands can estimate chla with RMSE below 11 mg/m3. The findings underlined the rationale behind the conceptual model and demonstrated the robustness of this algorithm for chla retrieval in turbid, productive estuarine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号